1
|
Han M, Liu Z, Huang S, Zhang H, Yang H, Liu Y, Zhang K, Zeng Y. Application of Biochar-Based Materials for Effective Pollutant Removal in Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1933. [PMID: 39683321 DOI: 10.3390/nano14231933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
With the growth of the global population and the acceleration of industrialization, the problem of water pollution has become increasingly serious, posing a major threat to the ecosystem and human health. Traditional water treatment technologies make it difficult to cope with complex pollution, so the scientific community is actively exploring new and efficient treatment methods. Biochar (BC), as a low-cost, green carbon-based material, exhibits good adsorption and catalytic properties in water treatment due to its porous structure and abundant active functional groups. However, BC's pure adsorption or catalytic capacity is limited, and researchers have dramatically enhanced its performance through modification means, such as loading metals or heteroatoms. In this paper, we systematically review the recent applications of BC and its modified materials for water treatment in adsorption, Fenton-like, electrocatalytic, photocatalytic, and sonocatalytic systems, and discuss their adsorption/catalytic mechanisms. However, most of the research in this field is at the laboratory simulation stage and still needs much improvement before it can be applied in large-scale wastewater treatment. This review improves the understanding of the pollutant adsorption/catalytic properties and mechanisms of BC-based materials, analyzes the limitations of the current studies, and investigates future directions.
Collapse
Affiliation(s)
- Meiyao Han
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Ziyang Liu
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Shiyue Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Huanxing Zhang
- Luoyang Petrochemical Engineering Design Co., Ltd., Luoyang 471003, China
| | - Huilin Yang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Yuan Liu
- Chengdu Tiantou Industry Co., Ltd., Chengdu 610000, China
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| | - Yusheng Zeng
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, China
| |
Collapse
|
2
|
Zhuang Q, Hu C, Zhu W, Cheng G, Chen M, Wang Z, Cai S, Li L, Jin Z, Wang Q. Facile synthesis of MnO/NC nanohybrids toward high-efficiency ORR for zinc-air battery. RSC Adv 2024; 14:24031-24038. [PMID: 39086517 PMCID: PMC11290431 DOI: 10.1039/d4ra04237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The development of inexpensive non-precious metal materials as high-efficiency stable oxygen reduction reaction (ORR) catalysts holds significant promise for application in metal-air batteries. Here, we synthesized a series of nanohybrids formed from MnO nanoparticles anchored on N-doped Ketjenblack carbon (MnO/NC) via a facile hydrothermal reaction and pyrolysis strategy. We systematically investigated the influence of pyrolysis temperature (600 to 900 °C) on the ORR activities of the MnO/NC samples. At the optimized pyrolysis temperature of 900 °C, the resulting MnO/NC (referred to as MnO/NC-900) exhibited superior ORR activity (onset potential = 0.85 V; half-wave potential = 0.74 V), surpassing other MnO/NC samples and nitrogen-doped Ketjenblack carbon (NC). Additionally, MnO/NC-900 demonstrated better stability than the Pt/C catalyst. The enhanced ORR activity of MnO/NC-900 was attributed to the synergy effect between MnO and NC, abundant surface carbon defects and surface-active components (N species and oxygen vacancies). Notably, the Zinc-air battery (ZAB) equipped MnO/NC-900 as the cathode catalyst delivered promising performance metrics, including a high peak power density of 146.5 mW cm-2, a large specific capacity of 795 mA h gZn -1, and an excellent cyclability up to 360 cycles. These results underscore the potential of this nanohybrid for applications in energy storage devices.
Collapse
Affiliation(s)
- Qingxi Zhuang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Chengjun Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Weiting Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Gao Cheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Meijie Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Ziyuan Wang
- Foshan Institute of Environment and Energy Technology Foshan 528000 China
| | - Shijing Cai
- Foshan Institute of Environment and Energy Technology Foshan 528000 China
| | - Litu Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Zier Jin
- Foshan Institute of Environment and Energy Technology Foshan 528000 China
| | - Qiang Wang
- School of Materials and Energy, Chongqing Key Lab for Battery Materials and Technologies, Southwest University Chongqing 400715 China
| |
Collapse
|
3
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas M, Pérez-Cadenas AF, Carrasco-Marín F. Antibiotic Degradation via Fenton Process Assisted by a 3-Electron Oxygen Reduction Reaction Pathway Catalyzed by Bio-Carbon-Manganese Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1112. [PMID: 38998717 PMCID: PMC11243440 DOI: 10.3390/nano14131112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Bio-carbon-manganese composites obtained from olive mill wastewater were successfully prepared using manganese acetate as the manganese source and olive wastewater as the carbon precursor. The samples were characterized chemically and texturally by N2 and CO2 adsorption at 77 K and 273 K, respectively, by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. Electrochemical characterization was carried out by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The samples were evaluated in the electro-Fenton degradation of tetracycline in a typical three-electrode system under natural conditions of pH and temperature (6.5 and 25 °C). The results show that the catalysts have a high catalytic power capable of degrading tetracycline (about 70%) by a three-electron oxygen reduction pathway in which hydroxyl radicals are generated in situ, thus eliminating the need for two catalysts (ORR and Fenton).
Collapse
Affiliation(s)
- Edgar Fajardo-Puerto
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Abdelhakim Elmouwahidi
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Esther Bailón-García
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - María Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
- Dpto. Química Inorgánica y Química Técnica, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Av. de Esparta s/n, Las Rozas de Madrid, 28232 Madrid, Spain
| | - Agustín F Pérez-Cadenas
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| | - Francisco Carrasco-Marín
- UGR-Carbon, Materiales Polifuncionales Basados en Carbono, Dpto. de Química Inorgánica, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071 Granada, Spain
| |
Collapse
|
4
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
5
|
Jia Y, Li H, Zhao H, Zhang G, Zhang Z, Zhang X, Zhou W. A new strategy for improving the energy efficiency of electro-Fenton: Using N-doped activated carbon cathode with strong Fe(III) adsorption capacity to promote Fe(II) regeneration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120823. [PMID: 38583380 DOI: 10.1016/j.jenvman.2024.120823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Fe(II) regeneration plays a crucial role in the electro-Fenton process, significantly influencing the rate of ·OH formation. In this study, a method is proposed to improve Fe(II) regeneration through N-doping aimed at enhancing the adsorption capacity of the activated carbon cathode for Fe(III). N-doping not only enriched the pore structure on the surface of activated carbon, providing numerous adsorption sites, but also significantly increased the adsorption energy for Fe(III). Among the types of nitrogen introduced, pyridine-N exhibited the most substantial enhancement effect, followed by pyrrole-N, while graphite-N showed a certain degree of inhibition. Furthermore, N-doping facilitated the adsorption of all forms of Fe(III) by activated carbon. The adsorption and electrosorption rates of the NAC-900 electrode for Fe(III) were 30.33% and 42.36%, respectively. Such modification markedly enhanced the Fe3+/Fe2+ cycle within the electro-Fenton system. The NAC-900 system demonstrated an impressive phenol degradation efficiency of 93.67%, alongside the lowest electricity consumption attributed to the effective "adsorption-reduction" synergy for Fe(III) on the NAC-900 electrode. Compared to the AC cathode electro-Fenton system, the degradation efficiency of the NAC-900 cathode electro-Fenton system at pH = levels ranging from 3 to 5 exceeded 90%; thus, extending the pH applicability of the electro-Fenton process. The degradation efficiency of phenol using the NAC-900 cathode electro-Fenton system in various water matrices approached 90%, indicating robust performance in real wastewater treatment scenarios. This research elucidates the impact of cathodic Fe(III) adsorption on Fe(II) regeneration within the electro-Fenton system, and clarifies the influence of different N- doping types on the cathodic adsorption of Fe(III).
Collapse
Affiliation(s)
- Yongying Jia
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Hongguang Li
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China.
| | - Guole Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Zhuangzhuang Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Xiaolong Zhang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, Heilongjiang, 163318, China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
6
|
Gao Y, Xie F, Bai H, Zeng L, Zhang J, Liu M, Zhu W. A carbon felt cathode modified by acidic oxidised carbon nanotubes for the high H 2O 2 generation and its application in electro-Fenton. ENVIRONMENTAL TECHNOLOGY 2024; 45:1669-1682. [PMID: 36408871 DOI: 10.1080/09593330.2022.2150093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Herein, a carbon felt (CF) cathode modified by the acidic oxidised carbon nanotubes (OCNTs) exhibited a high yield of the H2O2 generation in electro-Fenton. Rotating disk electrode (RDE) measurements showed that the selective generation of H2O2 occurred on the CF cathode coated by OCNTs (OCNTs/CF), which was attributed to the high amount of oxygen-containing functional groups in OCNTs. Moreover, the pollutant degradation efficiency could almost reach 100% within 60 min in electro-Fenton with OCNTs/CF as the cathode. Furthermore, the pollutant removal efficiency was kept constant after five consecutive cycles, indicating the high stability of OCNTs/CF cathode. Besides, the hydrophilicity of OCNTs/CF cathode was significantly enhanced owing to the abundant oxygen-contained functional groups on the surface of the OCNTs/CF cathode, which facilitated the mass transfer between the OCNTs/CF cathode and the reactants in the bulk solution. To reveal the possible mechanism in electro-Fenton equipped with the OCNTs/CF cathode, quenching experiments and electron paramagnetic resonance (EPR) investigations were further conducted. This work provided valuable insights into the fabrication of the non-metallic cathode with a high ability towards H2O2 generation in electro-Fenton for efficient pollutant removal.
Collapse
Affiliation(s)
- Ying Gao
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Fangshu Xie
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Huiling Bai
- College of literature, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Li Zeng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Jingbin Zhang
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Meiyu Liu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Weihuang Zhu
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Qi F, Peng J, Liang Z, Guo J, Yin J, Song A, Li Z, Liu J, Fang T, Zhang J, Wu L, Zhang Q, Wang T, Du Z, Mao H. Transforming waste brake pads from automobiles into Nano-Catalyst: Synergistic Fe-C-Cu triple sites for efficient fenton-like oxidation of organic pollutants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:225-234. [PMID: 38218093 DOI: 10.1016/j.wasman.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
The arbitrary disposal of used brake pads from motor vehicles has resulted in severe heavy metal pollution and resource wastage, highlighting the urgent need to explore the significant untapped potential of these discarded materials. In this study, The in-situ growth of highly dispersed Fe2O3 nanocrystals was achieved by simple oxidation annealing of brake pad debris(BPD). Interestingly, Cu remained unoxidized and acted as a "valence state transformation bridge of Fe2O3" to construct the "triple Fe-C-Cu sites". The Fenton degradation experiment of pollutants was conducted under constant temperature conditions at 40 °C, a stirring rate of 1300 rpm, a pH value of 3, a catalyst dosage of 0.5 g/L, pollutant dosage ranging from 50 to 400 mg/L, and H2O2 dosage of 0.25 g/L. Experimental results showed that BPD treated at 300 °C for 2 h exhibited optimal Fenton-like oxidation activity, achieving rapid degradation of over 90 % of refractory antibiotics, such as tetracycline and ciprofloxacin, in organic wastewater within 10 min. This remarkable performance was mainly attributed to the synergistic effect of "Fe-C-Cu triple sites", where the electron-donating role of C in the Fe-C and Cu-C interfaces facilitated the conversion of the Fe(III) to Fe(II) and Cu(II) to Cu(I). In addition, the ability of Cu2+ to accept electrons at the Fe-Cu interface promoted the transition from Fe (II) to Fe (III). This "balance of electron gain and loss" accelerated the interfacial electron transfer and the recycle of dual Fenton sites, Fe(II)/Fe(III) and Cu(I)/Cu(II), to generate more ·OH from H2O2. Therefore, this strategy of functionalizing BPD as Fenton-like catalysts without the addition of external Fe provides intriguing prospects for understanding the construction of Fe-based Fenton catalysts and resource utilization of Fe-containing solid waste materials.
Collapse
Affiliation(s)
- Fuyuan Qi
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Zilu Liang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiliang Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiawei Yin
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ainan Song
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zongxuan Li
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiayuan Liu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jinsheng Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qijun Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhuofei Du
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Zhou L, Liu Y, Shi H, Qing Y, Chen C, Shen L, Zhou M, Li B, Lin H. Molecular oxygen activation: Innovative techniques for environmental remediation. WATER RESEARCH 2024; 250:121075. [PMID: 38159543 DOI: 10.1016/j.watres.2023.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Molecular oxygen as a green, non-toxic, and inexpensive oxidant has displayed numerous advantages compared with other oxidants for more sustainable and environmentally benign pollutant degradation. Molecular oxygen activation stands as a groundbreaking approach in advanced oxidation processes, offering efficient environmental remediation with minimal environmental impact with the production of high-oxidation reactive oxygen species (ROS). The adaptability and energy efficiency of molecular oxygen activation significantly contribute to the progression of sustainable water remediation technologies. This review meticulously explores the principles and mechanisms of molecular oxygen activation, shedding light on the diverse ROS production pathways. Subsequently, this review comprehensively details contemporary activation approaches, including photocatalytic activation, electrocatalytic activation, piezoelectric activation, and photothermal activation, explicating their distinct activation mechanisms. Additionally, it delves into the promising applications of molecular oxygen activation in the degradation of water pollutants, primary air pollutants, and volatile organic compounds, providing an in-depth analysis of the associated degradation pathways and mechanisms. Moreover, this review also addresses the imminent challenges and emerging opportunities in environmental remediation. It is envisioned that this comprehensive analysis will spur ongoing exploration and innovation in the use of molecular oxygen activation for environmental remediation and beyond.
Collapse
Affiliation(s)
- Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
9
|
Yang H, Chen N, Wang Z, Liu J, Qin J, Zhu K, Jia H. Biochar-Associated Free Radicals Reduce Soil Bacterial Diversity: New Insight into Ecoenzymatic Stoichiometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20238-20248. [PMID: 37976412 DOI: 10.1021/acs.est.3c06864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The toxicity of environmentally persistent free radicals (EPFRs), often generated during biochar production, on soil bacteria is still not truly reflected when considering the conditions in real soil. Herein, the influence of free radicals within biochar on soil bacteria was investigated from the perspectives of enzyme activity, community structure, and ecoenzymatic stoichiometry. Biochar addition enhanced the contents of EPFRs and derived hydroxyl radicals (•OH) in the soil, while it reduced bacterial alpha diversity by 5.06-35.44%. The results of redundancy analysis and inhibition experiments collectively demonstrated the key role of EPFRs and •OH in reducing the bacterial alpha diversity. Specifically, EPFRs and •OH increased the stoichiometric imbalance by promoting the release of dissolved organic carbon and ammonium N, thus aggravating the P limitation in soil. This was further confirmed by increased alkaline phosphatase activity from 702 to 874 nmol g-1 h-1. The P limitation induced by EPFRs and •OH decreased the bacterial alpha diversity, as evidenced by the negative correlation between P limitation and bacterial alpha diversity (r2 = -0.931 to -0.979, P < 0.01) and the structural equation model. The obtained results demonstrate a ubiquitous but previously overlooked mechanism for bacterial toxicity of biochar-associated free radicals, providing scientific guidance for safe utilization of biochar.
Collapse
Affiliation(s)
- Huiqiang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Na Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Zhiqiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Jianjun Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Kecheng Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China
| |
Collapse
|
10
|
Fajardo-Puerto E, Elmouwahidi A, Bailón-García E, Pérez-Cadenas AF, Carrasco-Marín F. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process. Catalysts 2023. [DOI: 10.3390/catal13040674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Currently, the presence of emerging contaminants in water sources has raised concerns worldwide due to low rates of mineralization, and in some cases, zero levels of degradation through conventional treatment methods. For these reasons, researchers in the field are focused on the use of advanced oxidation processes (AOPs) as a powerful tool for the degradation of persistent pollutants. These AOPs are based mainly on the in-situ production of hydroxyl radicals (OH•) generated from an oxidizing agent (H2O2 or O2) in the presence of a catalyst. Among the most studied AOPs, the Fenton reaction stands out due to its operational simplicity and good levels of degradation for a wide range of emerging contaminants. However, it has some limitations such as the storage and handling of H2O2. Therefore, the use of the electro-Fenton (EF) process has been proposed in which H2O2 is generated in situ by the action of the oxygen reduction reaction (ORR). However, it is important to mention that the ORR is given by two routes, by two or four electrons, which results in the products of H2O2 and H2O, respectively. For this reason, current efforts seek to increase the selectivity of ORR catalysts toward the 2e− route and thus improve the performance of the EF process. This work reviews catalysts for the Fenton reaction, ORR 2e− catalysts, and presents a short review of some proposed catalysts with bifunctional activity for ORR 2e− and Fenton processes. Finally, the most important factors for electro-Fenton dual catalysts to obtain high catalytic activity in both Fenton and ORR 2e− processes are summarized.
Collapse
|
11
|
Yang Z, Liu S, Tang Y, Zhou Y, Xiao L. Enhancement of excess sludge dewatering by three-dimensional electro-Fenton process based on sludge biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130438. [PMID: 36446313 DOI: 10.1016/j.jhazmat.2022.130438] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Deep dewatering of waste activated sludge (WAS) is still a challenge due to high content of bound water and non-Newton fluid properties of sludge flocs. Electro-Fenton (EF) can enhance sludge dewaterability, however, low pH needed in homogeneous EF and fine flocs after EF conditioning influenced deep dewatering of sludge and the subsequent resource recovery disposal. In this study, a three dimension electro-Fenton (3D-EF) using Fe modified sludge biochar (Fe@SBC) as particle electrode, heterogeneous Fenton catalyst and skeleton builder for deep dewatering of sludge under neutral pH was proposed. Fe@SBC obtained at 800 °C exhibited high capacity of H2O2 electrogeneration and activation due to high conductivity and content of 2e-ORR selectivity functional groups. With promoted generation of H2O2 and hydroxyl radical (•OH), 3D-EF with Fe@SBC showed higher decomposition of bound extracellular polymeric substances (EPS) and disintegration of cells in sludge flocs, resulting in releasing bound and intracellular water into free water. Compared with EF, 3D-EF with Fe@SBC800 had higher ability in breaking macromolecules of protein and polysaccharide, as well as removing -COOH and -NH2 groups in EPS, which could facilitate release of bound water trapped in EPS and self-coagulation of fine flocs. During subsequent filtering process, Fe@SBC could enhance sludge filterability as skeleton builder. A synergetic effect of strong oxidation and physical conditioning were proposed in 3D-EF sludge dewaterability with Fe@SBC, and the improved oxidation by Fe@SBC was supposed to play the major role.
Collapse
Affiliation(s)
- Zongcai Yang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Shulei Liu
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yuqiong Tang
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Yingping Zhou
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, State Key Laboratory for Pollution Control and Resource Reuse, Nanjing University Xianlin Campus, Nanjing 210023, China.
| |
Collapse
|
12
|
Tang Q, Luo S, Gao H, Fan Y, Bao W, Gao Y, Sun Y, Yang C. N-doped graphene aerogel cathode with internal aeration for enhanced degradation of p-nitrophenol by electro-Fenton process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23481-23493. [PMID: 36327069 DOI: 10.1007/s11356-022-23868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
A columnar N-doped graphene aerogel (NGA) was successfully fabricated by one-step hydrothermal synthesis using L-hydroxyproline as reductant, N-doping, and swelling agent, and it was used as the cathode with internal aeration mode for the electro-Fenton degradation of p-nitrophenol. Owing to the stable solid-liquid-gas three-phase interface, more active defects, and modulated nitrogen dopants, the NGA cathode exhibited enhanced electrocatalytic activity. H2O2 could be continuously electro-generated via a two-electron oxygen reduction, and the yield of H2O2 was 153.3 mg·L-1·h-1 with the low electric energy consumption of 15.3 kWh kg-1. Simultaneously, the NGA cathode had better charge transfer capability with N-doping, which was conducive to the conversion of Fe3+/Fe2+. Under the optimal condition, nearly 100% removal of p-nitrophenol and 84% removal of TOC were obtained within 60 and 120 min, respectively. The NGA cathode also presented good stability and versatile applicability in different water matrices. Therefore, the NGA is a cost-effective cathode material in electro-Fenton system with adequate activity and reuse stabilization.
Collapse
Affiliation(s)
- Qian Tang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China.
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China.
| | - Sijia Luo
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Hang Gao
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yixin Fan
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Wenqi Bao
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Yonghui Gao
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Chunwei Yang
- Key Laboratory of Environmental Materials and Pollution Control, The Education Department of Jilin Province, Jilin Normal University, Siping, 136000, China
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| |
Collapse
|
13
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Qi H, Ren W, Shi X, Sun Z. Hydrothermally modified graphite felt as the electro-Fenton cathode for effective degradation of diuron: The acceleration of Fe2+ regeneration and H2O2production. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Li Y, Cao W, Zuo X. O- and F-doped porous carbon bifunctional catalyst derived from polyvinylidene fluoride for sulfamerazine removal in the metal-free electro-Fenton process. ENVIRONMENTAL RESEARCH 2022; 212:113508. [PMID: 35613635 DOI: 10.1016/j.envres.2022.113508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Heteroatom-doped carbon materials can effectively activate H2O2 into •OH during the metal-free electro-Fenton (EF) process. However, information on bifunctional catalysts for the simultaneous generation and activation of H2O2 is scarce. In this study, O- and F-doped porous carbon cathode materials (PPCs) were prepared by the direct carbonization of polyvinylidene fluoride (PVDF) for sulfamerazine (SMR) removal in a metal-free EF process. The porous structure and chemical composition of the PPCs were regulated by the carbonization temperature. PPC-6 (carbonized at 600 °C) exhibited optimal electrocatalytic performance in terms of electrochemical H2O2 generation and activation owing to its high specific surface area, mesoporous structure, and optimum fractions of doped O and F. Excellent performance of the 2e- oxygen reduction reaction was found with an H2O2 selectivity of 93.5% and an average electron transfer number of 2.13. An H2O2 accumulative concentration of 103.9 mg/L and an SMR removal efficiency of 90.1% were achieved during the metal-free EF process. PPC-6 was able to stably remove SMR over five consecutive cycles, retaining 92.6% of its original performance. Quantitative structure-activity relationship analysis revealed that doped oxygen functional groups contributed substantially to H2O2 generation, and semi-ionic C-F bonds with high electronegativity were the cause of the activation of H2O2 to •OH. These findings suggest that the PVDF-derived carbonaceous catalysts are feasible and desirable for metal-free EF processes.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - WenXing Cao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - XiaoJun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
16
|
Xing L, Wei J, Zhang Y, Xu M, Pan G, Li J, Li J, Li Y. Boosting active sites of protogenetic sludge-based biochar by boron doping for electro-Fenton degradation towards emerging organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Zhu H, Yao J, Zhang Z, Jiang X, Zhou Y, Bai Y, Hu X, Ning H, Hu J. Sulfidised nanoscale zerovalent iron-modified pitaya peel-derived carbon for enrofloxacin degradation and swine wastewater treatment: Combination of electro-Fenton and bio-electro-Fenton process. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128767. [PMID: 35398695 DOI: 10.1016/j.jhazmat.2022.128767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new Fenton system combining electro-Fenton and bio-electro-Fenton (EF-BEF) processes was proposed for ENR degradation and swine wastewater treatment, and pitaya peel-derived carbon modified with sulfidised nanoscale zerovalent iron (SnZVI) was developed as a catalyst for the system. The as-prepared PPC-800 carbon displayed a hierarchical porous structure (693.5 m2/g), abundant oxygen-containing groups, and carbon defects, which endowed it with a good adsorption capacity, high H2O2 generation capacity (151.9 ± 10.5 mg/L) during the EF period, and good power production performance (194.3 ± 12.50 mW/m2) during the BEF period. When modified with SnZVI, despite the decrease in the adsorption capacity and power output (102.05 ± 4.05 mW/m2), the SnZVI@PPC-2 exhibited the best ENR removal performance with that of 98.9 ± 0.2% in the EF period and 86.2 ± 5.6% during the BEF period. An increase in the current intensity and air flow rate promoted ENR degradation. Finally, swine wastewater was treated using the SnZVI@PPC-2 EF-BEF system, and 97.9 ± 1.3% of the TOC was removed using the combined system.
Collapse
Affiliation(s)
- Hongyi Zhu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Xu Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Haoming Ning
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
18
|
Fan M, Li C, Shao Y, Zhang S, Gholizadeh M, Hu X. Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153959. [PMID: 35189205 DOI: 10.1016/j.scitotenv.2022.153959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Biochar is a carbonaceous material from pyrolysis of biomass, the application of which is governed by its various properties such as the distribution of the functionalities and the associated hydrophilic/hydrophobic nature. This study particularly focused on the correlation of functionalities of biochar with its polarities by conducting the pyrolysis of cellulose from 200 to 700 °C and the characterization of the biochar. The results demonstrated that -OH, instead of CO or C-O-C, played decisive roles in formation of the biochar with hydrophilic surface. The results showed that the maximum of -OH abundance and the aliphatic CH was reached at 440 °C. The significant transition of oxygen-rich functionalities to carbon-rich functionalities occurred in the temperature from 460 to 700 °C. The dominance of aromatization process above this temperature range resulted in the significant increase of hydrophobicity of the biochar. The hydrophilic surface was of importance for the use of biochar as support for promoting the dispersion of Cu in Cu/biochar by generating the bonding sites for chelating with Cu2+.
Collapse
Affiliation(s)
- Mengjiao Fan
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Chao Li
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Yuewen Shao
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Shu Zhang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, PR China
| | - Mortaza Gholizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
19
|
Wang S, Liu H, Ye D, Lan Q, Zhu X, Yang Y, Chen R, Liao Q. Oxygen self-doping formicary-like electrocatalyst with ultrahigh specific surface area derived from waste pitaya peels for high-yield H2O2 electrosynthesis and efficient electro-Fenton degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Effective and continuous degradation of levofloxacin via the graphite felt electrode loaded with Fe3O4. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Wang X, Cao P, Zhao K, Chen S, Yu H, Quan X. Flow-through heterogeneous electro-Fenton system based on the absorbent cotton derived bulk electrode for refractory organic pollutants treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Selective electrochemical H2O2 generation on the graphene aerogel for efficient electro-Fenton degradation of ciprofloxacin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Liang S, Wang ZD, Guo ZF, Chen XY, Li SQ, Wang BD, Lu GL, Sun H, Liu ZN, Zang HY. N-Doped porous biocarbon materials derived from soya peptone as efficient electrocatalysts for the ORR. NEW J CHEM 2021. [DOI: 10.1039/d0nj06080a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-noble metal oxygen reduction catalyst was designed and fabricated via a facile carbonization of soya peptone and ZnCl2.
Collapse
|
24
|
Tao L, Ren H, Yu F. High-efficiency electro-catalytic performance of green dill biochar cathode and its application in electro-Fenton process for the degradation of pollutants. NEW J CHEM 2021. [DOI: 10.1039/d1nj03430h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biochar (BC) is a kind of carbon-rich, renewable and low-cost material, which can be prepared from various organic materials.
Collapse
Affiliation(s)
- Ling Tao
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
- Gansu Hanxing Environmental Protection Co., Ltd., Lanzhou 730070, China
| | - Hanru Ren
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Fangke Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| |
Collapse
|