1
|
Xiang Y, Song X, Yang Y, Deng S, Fu L, Yang C, Chen M, Pu J, Zhang H, Chai H. Comammox rather than AOB dominated the efficient autotrophic nitrification-denitrification process in an extremely oxygen-limited environment. WATER RESEARCH 2024; 268:122572. [PMID: 39383803 DOI: 10.1016/j.watres.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
The discovery of complete ammonia oxidizer (comammox) has challenged the traditional understanding of the two-step nitrification process. However, their functions in the oxygen-limited autotrophic nitrification-denitrification (OLAND) process remain unclear. In this study, OLAND was achieved using comammox-dominated nitrifying bacteria in an extremely oxygen-limited environment with a dissolved oxygen concentrations of 0.05 mg/L. The ammonia removal efficiency exceeded 97 %, and the total nitrogen removal efficiency reached 71 % when sodium bicarbonate was used as the carbon source. The pseudo-first- and second-order models were found to best fit the ammonia removal processes under low and high loads, respectively, suggesting distinct ammonia removal pathways. Full-length 16S rRNA gene sequencing and metagenomic results revealed that comammox-dominated under different oxygen levels, in conjunction with anammox and heterotrophic denitrifiers. The abundance of enzymes involved in energy metabolism indicates the coexistence of anammox and autotrophic nitrification-heterotrophic denitrification pathways. The binning results showed that comammox bacteria engaged in horizontal gene transfer with nitrifiers, anammox bacteria, and denitrifiers to adapt to an obligate environments. Therefore, this study demonstrated that comammox, anammox, and heterotrophic denitrifiers play important roles in the OLAND process and provide a reference for further reducing aeration energy in the autotrophic nitrogen removal process.
Collapse
Affiliation(s)
- Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Xiaoming Song
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Yilin Yang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Shuai Deng
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Liwei Fu
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China.
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
2
|
Sun S, Ding Y, Ding S, Zheng X, Wang Z, Zhang M, Yan P, Gu X, He S. Unraveling the synergistic promotion mechanism of Fe 0 coupling phragmites australis biomass for nitrogen removal in coastal wetland: From low to moderate salinities. ENVIRONMENTAL RESEARCH 2024; 263:120005. [PMID: 39288827 DOI: 10.1016/j.envres.2024.120005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
The simulated coastal constructed wetlands supplemented with Fe0 and phragmites australis (P.A) biomass (CW-M) were constructed to improve nitrogen removal under different salinities (0-15‰). Results showed that the denitrification performance of CW-M were improved significantly, with the higher NO3--N removal of 72-94% and lower N2O emission flux, when compared with mono-P.A biomass(CW-bio), mono-Fe0 system (CW-Fe) and control system. The nitrogen removal showed a trend of first increasing (0‰-7‰) and then decreasing (7‰-15‰) with the highest NO3--N removal of 94% and enhanced removal efficiency of 41% in CW-M. Fe0 and P.A biomass coupling could reduce the stress of salinity on denitrification. Batch experiments have demonstrated that Fe0 and P.A biomass could mutually stimulate more total organic carbon and total iron (TFe) release as electron donors for denitrification. Meanwhile, appropriate salinity could also promote the release of TFe. The typical heterotrophic denitrifying genera Bacillus and iron autotrophic denitrifying genera Thermomonas have the highest proportion in CW-M, with 21.83% and 0.10%, respectively. Fe0 and P.A biomass adding simultaneously promoted the carbon and iron metabolism, further enhancing the nitrogen metabolism process. The joint enhancement of autotrophic and heterotrophic denitrification contributes to NO3--N removal in CW-M for treating saline, low C/N wastewater in coastal wetlands.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yijing Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiangyong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China
| | - Zhiquan Wang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China.
| |
Collapse
|
3
|
McKnight MM, Neufeld JD. Comammox Nitrospira among dominant ammonia oxidizers within aquarium biofilter microbial communities. Appl Environ Microbiol 2024; 90:e0010424. [PMID: 38899882 PMCID: PMC11267875 DOI: 10.1128/aem.00104-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Nitrification by aquarium biofilters transforms ammonia waste (NH3/NH4+) to less toxic nitrate (NO3-) via nitrite (NO2-). Prior to the discovery of complete ammonia-oxidizing ("comammox" or CMX) Nitrospira, previous research revealed that ammonia-oxidizing archaea (AOA) dominated over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Here, we profiled aquarium biofilter microbial communities and quantified the abundance of all three known ammonia oxidizers using 16S rRNA gene sequencing and quantitative PCR (qPCR), respectively. Biofilter and water samples were each collected from representative residential and commercial freshwater and saltwater aquaria. Distinct biofilter microbial communities were associated with freshwater and saltwater biofilters. Comammox Nitrospira amoA genes were detected in all 38 freshwater biofilter samples (average CMX amoA genes: 2.2 × 103 ± 1.5 × 103 copies/ng) and dominant in 30, whereas AOA were present in 35 freshwater biofilter samples (average AOA amoA genes: 1.1 × 103 ± 2.7 × 103 copies/ng) and only dominant in 7 of them. The AOB were at relatively low abundance within biofilters (average of 3.2 × 101 ± 1.1 × 102 copies of AOB amoA genes/ng of DNA), except for the aquarium with the highest ammonia concentration. For saltwater biofilters, AOA or AOB were differentially abundant, with no comammox Nitrospira detected. Additional sequencing of Nitrospira amoA genes revealed differential distributions, suggesting niche adaptation based on water chemistry (e.g., ammonia, carbonate hardness, and alkalinity). Network analysis of freshwater microbial communities demonstrated positive correlations between nitrifiers and heterotrophs, suggesting metabolic and ecological interactions within biofilters. These results demonstrate that comammox Nitrospira plays a previously overlooked, but important role in home aquarium biofilter nitrification. IMPORTANCE Nitrification is a crucial process that converts toxic ammonia waste into less harmful nitrate that occurs in aquarium biofilters. Prior research found that ammonia-oxidizing archaea (AOA) were dominant over ammonia-oxidizing bacteria (AOB) in freshwater aquarium biofilters. Our study profiled microbial communities of aquarium biofilters and quantified the abundance of all currently known groups of aerobic ammonia oxidizers. The findings reveal that complete ammonia-oxidizing (comammox) Nitrospira were present in all freshwater aquarium biofilter samples in high abundance, challenging our previous understanding of aquarium nitrification. We also highlight niche adaptation of ammonia oxidizers based on salinity. The network analysis of freshwater biofilter microbial communities revealed significant positive correlations among nitrifiers and other community members, suggesting intricate interactions within biofilter communities. Overall, this study expands our understanding of nitrification in aquarium biofilters, emphasizes the role of comammox Nitrospira, and highlights the value of aquaria as microcosms for studying nitrifier ecology.
Collapse
Affiliation(s)
| | - Josh D. Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Jin D, Zhang X, Zhang X, Zhou L, Zhu Z, Deogratias UK, Wu Z, Zhang K, Ji X, Ju T, Zhu X, Gao B, Ji L, Zhao R, Ruth G, Wu P. A critical review of comammox and synergistic nitrogen removal coupling anammox: Mechanisms and regulatory strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174855. [PMID: 39034010 DOI: 10.1016/j.scitotenv.2024.174855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Nitrification is highly crucial for both anammox systems and the global nitrogen cycle. The discovery of complete ammonia oxidation (comammox) challenges the inherent concept of nitrification as a two-step process. Its wide distribution, adaptability to low substrate environments, low sludge production, and low greenhouse gas emissions may make it a promising new nitrogen removal treatment process. Meanwhile, anammox technology is considered the most suitable process for future wastewater treatment. The diverse metabolic capabilities and similar ecological niches of comammox bacteria and anammox bacteria are expected to achieve synergistic nitrogen removal within a single system. However, previous studies have overlooked the existence of comammox, and it is necessary to re-evaluate the conclusions drawn. This paper outlined the ecophysiological characteristics of comammox bacteria and summarized the environmental factors affecting their growth. Furthermore, it focused on the enrichment, regulatory strategies, and nitrogen removal mechanisms of comammox and anammox, with a comparative analysis of hydroxylamine, a particular intermediate product. Overall, this is the first critical overview of the conclusions drawn from the last few years of research on comammox-anammox, highlighting possible next steps for research.
Collapse
Affiliation(s)
- Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ufoymungu Kisa Deogratias
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xurui Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Bo Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Luomiao Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Guerra Ruth
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
5
|
Guo Z, Ma XS, Ni SQ. Journey of the swift nitrogen transformation: Unveiling comammox from discovery to deep understanding. CHEMOSPHERE 2024; 358:142093. [PMID: 38679176 DOI: 10.1016/j.chemosphere.2024.142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
COMplete AMMonia OXidizer (comammox) refers to microorganisms that have the function of oxidizing NH4+ to NO3- alone. The discovery of comammox overturned the two-step theory of nitrification in the past century and triggered many important scientific questions about the nitrogen cycle in nature. This comprehensive review delves into the origin and discovery of comammox, providing a detailed account of its detection primers, clades metabolic variations, and environmental factors. An in-depth analysis of the ecological niche differentiation among ammonia oxidizers was also discussed. The intricate role of comammox in anammox systems and the relationship between comammox and nitrogen compound emissions are also discussed. Finally, the relationship between comammox and anammox is displayed, and the future research direction of comammox is prospected. This review reveals the metabolic characteristics and distribution patterns of comammox in ecosystems, providing new perspectives for understanding nitrogen cycling and microbial ecology. Additionally, it offers insights into the potential application value and prospects of comammox.
Collapse
Affiliation(s)
- Zheng Guo
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Xue Song Ma
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Shandong, 266237, China.
| |
Collapse
|
6
|
Shah AS, Hsu PC, Chisholm C, Podolyan A, Cameron K, Luo J, Stenger R, Carrick S, Hu W, Ferguson SA, Wei W, Shen J, Zhang L, Liu H, Zhao T, Wei W, Ding W, Pan H, Liu Y, Li B, Du J, Di HJ. Nitrification inhibitor chlorate and nitrogen substrates differentially affect comammox Nitrospira in a grassland soil. Front Microbiol 2024; 15:1392090. [PMID: 38808273 PMCID: PMC11130707 DOI: 10.3389/fmicb.2024.1392090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Through the combined use of two nitrification inhibitors, Dicyandiamide (DCD) and chlorate with nitrogen amendment, this study aimed to investigate the contribution of comammox Nitrospira clade B, ammonia oxidizing bacteria (AOB) and archaea (AOA) to nitrification in a high fertility grassland soil, in a 90-day incubation study. Methods The soil was treated with nitrogen (N) at three levels: 0 mg-N kg-1 soil, 50 mg-N kg-1 soil, and 700 mg-N kg-1 soil, with or without the two nitrification inhibitors. The abundance of comammox Nitrospira, AOA, AOB, and nitrite oxidising bacteria (NOB) was measured using qPCR. The comammox Nitrospira community structure was assessed using Illumina sequencing. Results and Discussion The results showed that the application of chlorate inhibited the oxidation of both NH4+ and NO2- in all three nitrogen treatments. The application of chlorate significantly reduced the abundance of comammox Nitrospira amoA and nxrB genes across the 90-day experimental period. Chlorate also had a significant effect on the beta diversity (Bray-Curtis dissimilarity) of the comammox Nitrospira clade B community. Whilst AOB grew in response to the N substrate additions and were inhibited by both inhibitors, AOA showed litle or no response to either the N substrate or inhibitor treatments. In contrast, comammox Nitrospira clade B were inhibited by the high ammonium concentrations released from the urine substrates. These results demonstrate the differential and niche responses of the three ammonia oxidising communities to N substrate additions and nitrification inhibitor treatments. Further research is needed to investigate the specificity of the two inhibitors on the different ammonia oxidising communities.
Collapse
Affiliation(s)
- Anish S. Shah
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Pei-Chun Hsu
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Chris Chisholm
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Andriy Podolyan
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | - Keith Cameron
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| | | | - Roland Stenger
- Lincoln Agritech, Ruakura Research Centre, Hamilton, New Zealand
| | - Sam Carrick
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Wei Hu
- The New Zealand Institute for Plant and Food Research, Lincoln, New Zealand
| | - Scott A. Ferguson
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | - Wenhua Wei
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Limei Zhang
- Research Centre for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tongke Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wenxue Wei
- Institute of Subtropical Agricultural Ecology, Chinese Academy of Sciences, Changsha, China
| | - Weixin Ding
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hong Pan
- College of Natural Resources and Environment, Shandong Agricultural University, Taian, China
| | - Yimeng Liu
- Centre for Innovation and Development, Beijing Normal University, Zhuhai, China
| | - Bowen Li
- College of Natural Resources and Environment, Hebei Agricultural University, Baoding, China
| | - Jianjun Du
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hong J. Di
- Centre for Soil and Environmental Research, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
7
|
Vilardi KJ, Johnston J, Dai Z, Cotto I, Tuttle E, Patterson A, Stubbins A, Pieper KJ, Pinto AJ. Nitrogen source influences the interactions of comammox bacteria with aerobic nitrifiers. Microbiol Spectr 2024; 12:e0318123. [PMID: 38511951 PMCID: PMC11064514 DOI: 10.1128/spectrum.03181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
While the co-existence of comammox Nitrospira with canonical nitrifiers is well documented in diverse ecosystems, there is still a dearth of knowledge about the mechanisms underpinning their interactions. Understanding these interaction mechanisms is important as they may play a critical role in governing nitrogen biotransformation in natural and engineered ecosystems. In this study, we tested the ability of two environmentally relevant factors (nitrogen source and availability) to shape interactions between strict ammonia and nitrite-oxidizing bacteria and comammox Nitrospira in continuous flow column reactors. The composition of inorganic nitrogen species in reactors fed either ammonia or urea was similar during the lowest input nitrogen concentration (1 mg-N/L), but higher concentrations (2 and 4 mg-N/L) promoted significant differences in nitrogen species composition and nitrifier abundances. The abundance and diversity of comammox Nitrospira were dependent on both nitrogen source and input concentrations as multiple comammox Nitrospira populations were preferentially enriched in the urea-fed system. In contrast, their abundance was reduced in response to higher nitrogen concentrations in the ammonia-fed system. The preferential enrichment of comammox Nitrospira in the urea-fed system could be associated with their ureolytic activity calibrated to their ammonia oxidation rates, thus minimizing ammonia accumulation, which may be partially inhibitory. However, an increased abundance of comammox Nitrospira was not associated with a reduced abundance of nitrite oxidizers in the urea-fed system while a negative correlation was found between them in the ammonia-fed system, the latter dynamic likely emerging from reduced availability of nitrite to strict nitrite oxidizers at low ammonia concentrations. IMPORTANCE Nitrification is an essential biological process in drinking water and wastewater treatment systems for treating nitrogen pollution. The discovery of comammox Nitrospira and their detection alongside canonical nitrifiers in these engineered ecosystems have made it necessary to understand the environmental conditions that regulate their abundance and activity relative to other better-studied nitrifiers. This study aimed to evaluate two important factors that could potentially influence the behavior of nitrifying bacteria and, therefore, impact nitrification processes. Column reactors fed with either ammonia or urea were systematically monitored to capture changes in nitrogen biotransformation and the nitrifying community as a function of influent nitrogen concentration, nitrogen source, and reactor depth. Our findings show that with increased ammonia availability, comammox Nitrospira decreased in abundance while nitrite oxidizers abundance increased. Yet, in systems with increasing urea availability, comammox Nitrospira abundance and diversity increased without an associated reduction in the abundance of canonical nitrifiers.
Collapse
Affiliation(s)
- Katherine Jeanne Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Juliet Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Zihan Dai
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Irmarie Cotto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Erin Tuttle
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Ariana Patterson
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Aron Stubbins
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kelsey J. Pieper
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ameet J. Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Ghimire-Kafle S, Weaver ME, Kimbrel MP, Bollmann A. Competition between ammonia-oxidizing archaea and complete ammonia oxidizers from freshwater environments. Appl Environ Microbiol 2024; 90:e0169823. [PMID: 38349190 PMCID: PMC10952389 DOI: 10.1128/aem.01698-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 03/21/2024] Open
Abstract
Aerobic ammonia oxidizers (AOs) are prokaryotic microorganisms that contribute to the global nitrogen cycle by performing the first step of nitrification, the oxidation of ammonium to nitrite and nitrate. While aerobic AOs are found ubiquitously, their distribution is controlled by key environmental conditions such as substrate (ammonium) availability. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are generally found in oligotrophic environments with low ammonium availability. However, whether AOA and comammox share these habitats or outcompete each other is not well understood. We assessed the competition for ammonium between an AOA and comammox enriched from the freshwater Lake Burr Oak. The AOA enrichment culture (AOA-BO1) contained Nitrosarchaeum sp. BO1 as the ammonia oxidizer and Nitrospira sp. BO1 as the nitrite oxidizer. The comammox enrichment BO4 (cmx-BO4) contained the comammox strain Nitrospira sp. BO4. The competition experiments were performed either in continuous cultivation with ammonium as a growth-limiting substrate or in batch cultivation with initial ammonium concentrations of 50 and 500 µM. Regardless of the ammonium concentration, Nitrospira sp. BO4 outcompeted Nitrosarchaeum sp. BO1 under all tested conditions. The dominance of Nitrospira sp. BO4 could be explained by the ability of comammox to generate more energy through the complete oxidation of ammonia to nitrate and their more efficient carbon fixation pathway-the reductive tricarboxylic acid cycle. Our results are supported by the higher abundance of comammox compared to AOA in the sediment of Lake Burr Oak. IMPORTANCE Nitrification is a key process in the global nitrogen cycle. Aerobic ammonia oxidizers play a central role in the nitrogen cycle by performing the first step of nitrification. Ammonia-oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) are the dominant nitrifiers in environments with low ammonium availability. While AOA have been studied for almost 20 years, comammox were only discovered 8 years ago. Until now, there has been a gap in our understanding of whether AOA and comammox can co-exist or if one strain would be dominant under ammonium-limiting conditions. Here, we present the first study characterizing the competition between freshwater AOA and comammox under varying substrate concentrations. Our results will help in elucidating the niches of two key nitrifiers in freshwater lakes.
Collapse
Affiliation(s)
| | - Matt E. Weaver
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | | | | |
Collapse
|
9
|
Xiang Y, Zhou T, Deng S, Shao Z, Liu Y, He Q, Chai H. Nitrite improved nitrification efficiency and enriched ammonia-oxidizing archaea and bacteria in the simultaneous nitrification and denitrification process. WATER RESEARCH X 2023; 21:100204. [PMID: 38098882 PMCID: PMC10719579 DOI: 10.1016/j.wroa.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Simultaneous nitrification and denitrification (SND) is effective and energy-saving for wastewater treatment. As an inevitable intermediate product in the SND process, nitrite affects the efficiency of ammonia oxidation and the composition of nitrifiers. To investigate the impact of nitrite on ammonia oxidation efficiency, two reactors performing SND were respectively operated without nitrite (R1 as control) and with 20 mg N/L nitrite addition (R2 as experimental). The total nitrogen removal efficiency was 74.5% in R1 while 99.0% in R2. With nitrite addition (i.e., 20 mg N/L), the ammonia removal rate in R2 increased to 4.5 times of that in R1. The ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) contributed to respective around 46.9% and 41.8% ammonia removal in R2 based on the results of experiments with specific inhibitors. The number of respective AOA and AOB ammonia monooxygenase gene (amoA) copies increased by 280 and 30 times due to nitrite addition, according to the qPCR results. The high-throughput sequencing results illustrated the increase of dominant AOB species from 0.40% in R1 to 1.59% in R2 and the phylogenetic tree analysis revealed a close link to Nitrosospira multiformis. These results indicated that the ammonia removal efficiency was improved and AOA/AOB were enriched by nitrite addition. The specific nitrite reductases in AOA and AOB boosted the adaptation of nitrite addition. This study demonstrated the positive impacts of nitrite addition on the ammonia removal efficiency and rate in the SND process.
Collapse
Affiliation(s)
- Yu Xiang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, China
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Tengzhi Zhou
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Siping Deng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhiyu Shao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
10
|
Meng S, Liang X, Peng T, Liu Y, Wang H, Huang T, Gu JD, Hu Z. Ecological distribution and function of comammox Nitrospira in the environment. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12557-6. [PMID: 37195422 DOI: 10.1007/s00253-023-12557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Complete ammonia oxidizers (Comammox) are of great significance for studying nitrification and expanding the understanding of the nitrogen cycle. Moreover, Comammox bacteria are also crucial in natural and engineered environments due to their role in wastewater treatment and maintaining the flux of greenhouse gases to the atmosphere. However, only few studies are there regarding the Comammox bacteria and their role in ammonia and nitrite oxidation in the environment. This review mainly focuses on summarizing the genomes of Nitrospira in the NCBI database. Ecological distribution of Nitrospira was also reviewed and the influence of environmental parameters on genus Nitrospira in different environments has been summarized. Furthermore, the role of Nitrospira in carbon cycle, nitrogen cycle, and sulfur cycle were discussed, especially the comammox Nitrospira. In addition, the overviews of current research and development regarding comammox Nitrospira, were summarized along with the scope of future research. KEY POINTS: • Most of Comammox Nitrospira are widely distributed in both aquatic and terrestrial ecosystems, but it has been studied less frequently in the extreme environments. • Comammox Nitrospira can be involved in different nitrogen transformation process, but rarely involved in nitrogen fixation. • The stable isotope and transcriptome techniques are important methods to study the metabolic function of comammox Nitrospira.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Xueji Liang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
11
|
Zhao Y, Chen W, Zhang P, Cai J, Lou Y, Hu B. Microbial cooperation promotes humification to reduce antibiotic resistance genes abundance in food waste composting. BIORESOURCE TECHNOLOGY 2022; 362:127824. [PMID: 36028052 DOI: 10.1016/j.biortech.2022.127824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance genes (ARGs) fate in a full-scale Food waste (FW) facility was investigated. Results showed that with the changes in ARGs, microbial networks could be naturally divided into two clusters, named as the ARGs increasing group (AI group) and the ARGs decreasing group (AD group). The significant difference between two groups (i.e. stronger microbial competition in the AI group and stronger microbial cooperation in the AD group) implied that the variation in ARGs over time were caused by a switch between competition and cooperation. These results indicated that microbial competition might increase ARGs abundance, while cooperation might reduce it. Meanwhile, structural-equation-model (SEM model) showed that humification indexes (e.g. GI value) was an indicator for characterizing microbial interactions and ARGs. The results of the linear model further confirmed that mature compost (GI values > 92.6 %) could reduce the risk of ARGs.
Collapse
Affiliation(s)
- Yuxiang Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Weizhen Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Zhao Y, Cai J, Zhang P, Qin W, Lou Y, Liu Z, Hu B. Core fungal species strengthen microbial cooperation in a food-waste composting process. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100190. [PMID: 36157338 PMCID: PMC9500350 DOI: 10.1016/j.ese.2022.100190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 05/19/2023]
Abstract
In ecosystem engineering research, the contribution of microbial cooperation to ecosystem function has been emphasized. Fungi are one of the predominant decomposers in composting, but thus far, less attention has been given to fungal than to bacterial cooperation. Therefore, network and cohesion analyses were combined to reveal the correlation between fungal cooperation and organic matter (OM) degradation in ten composting piles. Positive cohesion, reflecting the cooperation degree, was positively linked to the degradation rate of OM. From the community perspective, core species (i.e., Candida tropicalis, Issatchenkia orientails, Kazachstania exigua, and Dipodascus australiensis) with high occurrence frequency and abundance were the key in regulating positive cohesion. These species were highly relevant to functional genera associated with OM degradation in both fungal and bacterial domains. Therefore, focusing on these core fungal species might be an appropriate strategy for targeted regulation of functional microbes and promotion of degradation rates.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weizhen Qin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Zhao Y, Lou Y, Qin W, Cai J, Zhang P, Hu B. Interval aeration improves degradation and humification by enhancing microbial interactions in the composting process. BIORESOURCE TECHNOLOGY 2022; 358:127296. [PMID: 35562028 DOI: 10.1016/j.biortech.2022.127296] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Five full-scale food waste composts were conducted under different aeration frequencies (no aeration, aeration at different intervals, and continuous aeration) to reveal the optimal strategy and its microbial mechanisms. The highest degradation rate (77.2%) and humus content (29.3%) were observed in Treatment D with interval aeration (aeration 20 min, pause 10 min). Aeration influenced the degradation and humification rate by regulating microbial interactions. The microbial interactions peaked in Treatment D, with a 1.30-fold increase. In terms of the microbial community, Thermobifida was a key genus for improving positive cohesion, fulfilling three criteria (high abundance, high occurrence frequency, and significant differences between treatments). The aeration strategy employed in Treatment D not only increased relative abundance of Thermobifida (1.2 times higher) but also strengthened interaction between it and functional genera (34 nodes). Overall, interval aeration, featured by 20 min aeration and 10 min pause, could increase microbial interactions and improve composting efficiency.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yicheng Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Weizhen Qin
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jingjie Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Pan Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Zhao Y, Weng Q, Hu B. Microbial interaction promote the degradation rate of organic matter in thermophilic period. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 144:11-18. [PMID: 35299060 DOI: 10.1016/j.wasman.2022.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Composting is an efficient, microbe-driven method for the biodegradation of solid organic substrates. In such a complex engineering ecosystem, microbial interaction is more important to function than relative abundance and alpha diversity. However, microbial interaction and its driving force in the composting process has been rarely reported. Thus, we combined network analysis and positive cohesion to analyze the relationship between cooperation among bacteria taxa and the degradation of organic matter in ten industrial-scale food waste composting piles. The results showed that although the complexity of network and microbial diversity were inhibited by high temperature, microbial cooperation was stimulated in the thermophilic period. The positive cohesion, which reflected the degree of microbial cooperation, tended to be positively correlated with the degradation rate of organic matter, functional genera, and genes associated with organic matter degradation. Thus, microbial cooperation was a key factor in the promotion of the degradation of organic matter. From the insight microbial community, Thermobifida was the genera with high abundance, high occurrence frequency, and high contributions to microbial structure. Additionally, it was not only highly associated with the degree of cooperation but was also highly linked with the functional genera in the composting, implying that it might play an important role in regulating cooperation to promote the functional genera. Our research provides a deep understanding of the interaction among bacteria taxa during the composting process. Focusing on the abundance of Thermobifida might be an efficient way to improve composting quality by enhancing the cooperation of microbes.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Qin Weng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Zhao Y, Zhuge C, Weng Q, Hu B. Additional strains acting as key microbes promoted composting process. CHEMOSPHERE 2022; 287:132304. [PMID: 34563783 DOI: 10.1016/j.chemosphere.2021.132304] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Microbial inoculums (MIs) were the widely used biofortification strategy in composting. However, lack of efficient MIs and unclear strengthening mechanisms might impaired the efficiency of MIs. Here, three experimental group (precise strains, commercial MI, Inoculum HJ) and one control group (untreated) were investigated to close these gaps. Adding MIs could significantly prolong the duration of thermophilic period (1.5-2.8 times), but the difference in GI, pH value, EC value and moisture content were marginal. Furthermore, it could be observed that adding Inoculum HJ could improve the degradation rate of lignocellulose and organic matters for 1.22-1.25 times. The high-throughput sequencing results showed that adding Inoculum HJ made additional genus dominant, with their relative abundance raised from 2.58 to 3.39 times. Results of network analysis showed that microbial interaction could be strengthened by adding MIs, and significantly improved composting quality. The most intensive interaction was observed in the pile with Inoculum HJ, which was 1.20 times higher than other piles. To explore how Inoculum HJ strengthened microbial interaction, module based connectivity analysis was used to distinguish key hubs. Results showed that twelve hkey OTUs in the thermophilic period were similar to additional strains' full-length 16S rRNA gene. These results showed that additional strains behaved like the key hubs to strengthen microbial interaction in the thermophilic period. This research indicated that additional strains from the most efficient inoculum could behave as key hubs to increase the network complexity and had the potential to strengthen microbial interaction.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chengxiang Zhuge
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Qin Weng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
16
|
Yuan D, Zheng L, Tan Q, Wang X, Xing Y, Wang H, Wang S, Zhu G. Comammox activity dominates nitrification process in the sediments of plateau wetland. WATER RESEARCH 2021; 206:117774. [PMID: 34757282 DOI: 10.1016/j.watres.2021.117774] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The recent discovery of complete ammonia oxidation (comammox) has increased our understanding of nitrification. Although comammox has been shown to play an important role in plain wetland ecosystems, studies of comammox contribution are still limited in plateau wetland ecosystems. Here, we analyzed the abundance, activity, community and biogeochemical mechanisms of the comammox bacteria in Yunnan-kweichow and Qinghai-Tibet plateau wetlands from elevations of 1000-5000 m. Comammox bacteria were widely distributed in all 16 sediment samples with abundances higher than 0.96 ± 0.26 × 107 copies g-1 (n = 16). Comammox showed high activity (1.18 ± 0.17 to 1.98 ± 0.08 mg N kg-1 d-1) at high-elevation (3000-5000 m) and dominated the nitrification process (activity contribution: 37.20 - 60.62%). The activity contribution of ammonia-oxidizing bacteria (1.07 ± 0.08 to 2.79 ± 0.35 mg N kg-1 d-1) dominated the nitrification process (44.55 - 64.15%) in low-elevation (1000-3000 m) samples. All detected comammox Nitrospira belonged to clade A, while clade B was not detected. Elevation always had a strongest effect on key comammox species. Thus, we infer that elevation may drive the high relative abundance of the species Candidatus Nitrospira nitrificans (avg. 12.40%) and the low relative abundance of the species Nitrospira sp. SG-bin2 (avg. 4.75%) in high-elevation samples that showed a high comammox activity (avg. 1.62 mg N kg-1 d-1) and high contribution (avg. 46.08%) to the nitrification process. These results indicate that comammox may be an important and currently underestimated microbial nitrification process in plateau wetland ecosystems.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Huipeng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
Vijayan A, Vattiringal Jayadradhan RK, Pillai D, Prasannan Geetha P, Joseph V, Isaac Sarojini BS. Nitrospira as versatile nitrifiers: Taxonomy, ecophysiology, genome characteristics, growth, and metabolic diversity. J Basic Microbiol 2021; 61:88-109. [PMID: 33448079 DOI: 10.1002/jobm.202000485] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
The global nitrogen cycle is of paramount significance as it affects important processes like primary productivity and decomposition. Nitrification, the oxidation of ammonia to nitrate via nitrite, is a key process in the nitrogen cycle. The knowledge about nitrification has been challenged during the last few decades with inventions like anaerobic ammonia oxidation, ammonia-oxidizing archaea, and recently the complete ammonia oxidation (comammox). The discovery of comammox Nitrospira has made a paradigm shift in nitrification, before which it was considered as a two-step process, mediated by chemolithoautotrophic ammonia oxidizers and nitrite oxidizers. The genome of comammox Nitrospira equipped with molecular machineries for both ammonia and nitrite oxidation. The genus Nitrospira is ubiquitous, comes under phylum Nitrospirae, which comprises six sublineages consisting of canonical nitrite oxidizers and comammox. The single-step nitrification is energetically more feasible; furthermore, the existence of diverse metabolic pathways in Nitrospira is critical for its establishment in various habitats. The present review discusses the taxonomy, ecophysiology, isolation, identification, growth, and metabolic diversity of the genus Nitrospira; compares the genomes of canonical nitrite-oxidizing Nitrospira and comammox Nitrospira, and analyses the differences of Nitrospira with other nitrifying bacteria.
Collapse
Affiliation(s)
- Ardhra Vijayan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Rejish Kumar Vattiringal Jayadradhan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India.,Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Preena Prasannan Geetha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Bright Singh Isaac Sarojini
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, Kerala, India
| |
Collapse
|