1
|
Benà E, Ciotoli G, Petermann E, Bossew P, Ruggiero L, Verdi L, Huber P, Mori F, Mazzoli C, Sassi R. A new perspective in radon risk assessment: Mapping the geological hazard as a first step to define the collective radon risk exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169569. [PMID: 38157905 DOI: 10.1016/j.scitotenv.2023.169569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Radon is a radioactive gas and a major source of ionizing radiation exposure for humans. Consequently, it can pose serious health threats when it accumulates in confined environments. In Europe, recent legislation has been adopted to address radon exposure in dwellings; this law establishes national reference levels and guidelines for defining Radon Priority Areas (RPAs). This study focuses on mapping the Geogenic Radon Potential (GRP) as a foundation for identifying RPAs and, consequently, assessing radon risk in indoor environments. Here, GRP is proposed as a hazard indicator, indicating the potential for radon to enter buildings from geological sources. Various approaches, including multivariate geospatial analysis and the application of artificial intelligence algorithms, have been utilised to generate continuous spatial maps of GRP based on point measurements. In this study, we employed a robust multivariate machine learning algorithm (Random Forest) to create the GRP map of the central sector of the Pusteria Valley, incorporating other variables from census tracts such as land use as a vulnerability factor, and population as an exposure factor to create the risk map. The Pusteria Valley in northern Italy was chosen as the pilot site due to its well-known geological, structural, and geochemical features. The results indicate that high Rn risk areas are associated with high GRP values, as well as residential areas and high population density. Starting with the GRP map (e.g., Rn hazard), a new geological-based definition of the RPAs is proposed as fundamental tool for mapping Collective Radon Risk Areas in line with the main objective of European regulations, which is to differentiate them from Individual Risk Areas.
Collapse
Affiliation(s)
- Eleonora Benà
- Dipartimento di Geoscienze, Università di Padova, Padova, Italy.
| | - Giancarlo Ciotoli
- Istituto di Geologia Ambientale e Geoingegneria (IGAG), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy; Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy
| | - Eric Petermann
- Federal Office for Radiation Protection (BfS), Section Radon and NORM, Berlin, Germany
| | - Peter Bossew
- Federal Office for Radiation Protection (BfS), Section Radon and NORM, Berlin, Germany
| | - Livio Ruggiero
- Istituto Superiore per la Ricerca e la Protezione Ambientale (ISPRA), Roma, Italy
| | - Luca Verdi
- Provincia Autonoma di Bolzano, Laboratorio analisi aria e radioprotezione, Bolzano, Italy
| | - Paul Huber
- Azienda Sanitaria dell'Alto Adige, Bressanone, Italy
| | - Federico Mori
- Istituto di Geologia Ambientale e Geoingegneria (IGAG), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Claudio Mazzoli
- Dipartimento di Geoscienze, Università di Padova, Padova, Italy
| | - Raffaele Sassi
- Dipartimento di Geoscienze, Università di Padova, Padova, Italy
| |
Collapse
|
2
|
Tchorz-Trzeciakiewicz DE, Kozłowska B, Walencik-Łata A. Seasonal variations of terrestrial gamma dose, natural radionuclides and human health. CHEMOSPHERE 2023; 310:136908. [PMID: 36270528 DOI: 10.1016/j.chemosphere.2022.136908] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The aim of the research was to study seasonal variations in gamma radiation and the statistical significance of these variations. Moreover, we compared in-situ and laboratory analyses of uranium, thorium, radium and potassium K-40 contents. Exposure to a low level of radiation is a minor (but still is) contributor to overall cancer risk therefore we compared doses generated by gamma radiation with overall cancer risk. The research was performed in SW Poland in two granitoid massifs -Strzelin and Karkonosze. The in-situ measurements were performed seasonally using gamma-ray spectrometer Exploranium with BGO detector and Radiometer RK-100. The laboratory measurements were performed using spectrometer with HPGe detector Canberra-Packard and alpha spectrometry technique. The general trend of seasonal variations of natural radionuclides, terrestrial ambient gamma dose (TGDR) and ambient gamma dose rate (AGDR) was difficult to identify. We noticed slightly increased values of all analysed parameters in warmer seasons, and lower in colder, although there were some exceptions. These exceptions were induced by precipitation and varied soil water content, but variations were mostly not statistically significant. The statistically important deviation from the trend was registered only in equivalent uranium data when the survey was carried out during or just after intensive precipitation. We observed a good positive correlation between in-situ and laboratory results (TGDR in situ/Lab r = 0.696), therefore, we recommend using in-situ measurements in a dense measuring grid before collecting selected soil samples to better evaluate the level of natural radiation in the environment. The average ambient gamma dose in the Karkonosze Massif was 0.52 mSv y-1 whereas in the Strzelin Massif was 0.39 mSv y-1. The overall cancer risk in Karkonoski county is higher than in Strzelin county. A connection between increased gamma radiation and higher overall cancer risk is possible but should be examined during more elaborated research.
Collapse
Affiliation(s)
| | - B Kozłowska
- University of Silesia in Katowice, August Chełkowski Institute of Physics, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| | - A Walencik-Łata
- University of Silesia in Katowice, August Chełkowski Institute of Physics, 75 Pułku Piechoty 1, 41-500, Chorzów, Poland
| |
Collapse
|
3
|
Health Effects of Natural Environmental Radiation during Burning Season in Chiang Mai, Thailand. Life (Basel) 2022; 12:life12060853. [PMID: 35743884 PMCID: PMC9227549 DOI: 10.3390/life12060853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
This paper presents the first measurement of the investigation of the health impacts of indoor radon exposure and external dose from terrestrial radiation in Chiang Mai province during the dry season burning between 2018 and 2020. Indoor radon activity concentrations were carried out using a total of 220 RADUET detectors in 45 dwellings of Chiang Mai (7 districts) during burning and non-burning seasons. Results show that indoor radon activity concentration during the burning season (63 ± 33 Bq/m3) was significantly higher (p < 0.001) compared to the non-burning season (46 ± 19 Bq/m3), with an average annual value of 55 ± 28 Bq/m3. All values of indoor radon activity concentration were greater than the national (16 Bq/m3) and worldwide (39 Bq/m3) average values. In addition, the external dose from terrestrial radiation was measured using a car-borne survey during the burning season in 2018. The average absorbed rate in the air was 66 nGy/h, which is higher than the worldwide average value of 59 nGy/h. This might be due to the high activity concentrations of 238U and 323Th in the study area. With regards to the health risk assessment, the effective dose due to indoor radon exposure, external (outdoor) effective dose, and total annual effective dose were 1.6, 0.08, and 1.68 mSv/y, respectively. The total annual effective dose is higher than the worldwide average of 1.15 mSv/y. The excess lifetime cancer risk and radon-induced lung cancer risk during the burning season were 0.67% and 28.44 per million persons per year, respectively. Our results substantiate that indoor radon and natural radioactive elements in the air during the burning season are important contributors to the development of lung cancer.
Collapse
|
4
|
Environmental Gamma Dose Rate Monitoring and Radon Correlations: Evidence and Potential Applications. ENVIRONMENTS 2022. [DOI: 10.3390/environments9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Gamma emitting radionuclides naturally present in the Earth’s crust and the radon exhaled by soil in the atmosphere with its short-lived progeny are two of the main contributors to the environmental gamma dose rate that typically characterizes an outdoor measurement site. The present work aims to investigate variations in the environmental dose-rate time series originated by different natural phenomena, such as weather and seismic events, which can modify the radon concentration in the air. The data analyzed here were acquired over a five-year period using a Reuter–Stokes high-pressure ionization chamber placed in the ENEA Casaccia Research Center (Rome, Italy), from November 2013 to December 2018. The detector was set to take a single measurement of the equivalent ambient dose H*(10) every 15 min, thereby collecting more than 184,000 values over the five-year period under consideration. The detector’s sensitivity to the short-lived radon progeny was verified in a preparatory study performed by means of simultaneous radon flux measurement on field. Variations induced by meteorological events as well as variations potentially induced by seismic events were investigated by implementing different data analysis techniques. In the latter case, a retrospective preliminary study was conducted, applying the ARFIMA class of models in order to test the method’s potential. The analysis techniques, results and potential applications are presented and discussed in this article.
Collapse
|
5
|
Adelikhah M, Imani M, Hegedűs M, Kovács T. Modelling of indoor external and internal exposure due to different building materials containing NORMs in the vicinity of a HNBRA in Mahallat, Iran. Heliyon 2022; 8:e08909. [PMID: 35198774 PMCID: PMC8842013 DOI: 10.1016/j.heliyon.2022.e08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, by considering the Naturally Occurring Radioactive Materials (NORMs) contained in the building materials used in Mahallat, Iran - an area exposed to a high level of natural background radiation - residential scenarios were simulated by applying the computer code RESRAD-BUILD to estimate the long-term Effective Dose rate of three different cases of basic building materials utilized in walls, floors and ceilings. Maximum effective dose rates of between 504 and 1433 μSv yr-1 were calculated in the second case study, tiled cement floor. The highest external and radon doses were also calculated to be 369 and 1064 μSv, respectively. The simulation results revealed that 232Th and 40K contribute the most and least to the indoor dose, respectively. As a result of a sensitivity analysis, it was found that the air exchange rate is a key variable to easily reduce the radiological impacts of building materials. It was also shown that due to the presence of 226Ra, the sensitivity of effective dose to changes in wall thickness was higher than other radionuclides found in the building materials.
Collapse
Affiliation(s)
- Mohammademad Adelikhah
- Institute of Radiochemistry and Radioecology, Research Centre for Biochemical, Environmental and Chemical Engineering, University of Pannonia, 8200 Veszprém, Hungary
| | - Morteza Imani
- Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Miklós Hegedűs
- Institute of Radiochemistry and Radioecology, Research Centre for Biochemical, Environmental and Chemical Engineering, University of Pannonia, 8200 Veszprém, Hungary
| | - Tibor Kovács
- Institute of Radiochemistry and Radioecology, Research Centre for Biochemical, Environmental and Chemical Engineering, University of Pannonia, 8200 Veszprém, Hungary
- Corresponding author.
| |
Collapse
|
6
|
Soil Gas Measurements of Radon, CO2 and Hydrocarbon Concentrations as Indicators of Subsurface Hydrocarbon Accumulation and Hydrocarbon Seepage. SUSTAINABILITY 2021. [DOI: 10.3390/su13073840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil gas measurements of radon (222Rn), CO2, and hydrocarbon concentrations, as well as gamma-ray spectrometry, were conducted at two separate locations to estimate the measurement results for known locations of hydrocarbon accumulations in the subsurface and oil seepage on the surface. The aim of the study was to confirm the applicability of the method for identifying migration pathways (e.g., faults) and to detect possible seepages of hydrocarbons to the surface as well as to investigate possible health issue potential about the soil gas analysis results. Site A investigations were performed with a large number of sampling points to provide sufficient spatial coverage to capture the influence of subsurface lithologic variability as well as the influence of the migration pathway on the measured parameters. For the investigation of site B, sampling points were positioned to reflect the situation between the area above producing hydrocarbon fields and areas with no confirmed accumulation. The results presented show that it is possible to distinguish the near-surface lithology (gamma-ray spectrometry), characterize the migration pathway, and indicate the area of oil seepage at the surface. Areas above the known hydrocarbon accumulations generally have elevated radon concentrations and detectable heavier hydrocarbons with sporadic methane in soil gas, which contrasts with the lower radon levels and lack of detectable heavier hydrocarbons in soil gas in the area with no confirmed hydrocarbon accumulation in the subsurface.
Collapse
|