1
|
Logesh B, Karthik V, Bhaskar BV, Ebenezer E, Kumar MA. Implications of equivalent black carbon heterogeneity in south Indian high-altitude eco-sensitive region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1374. [PMID: 37880449 DOI: 10.1007/s10661-023-11957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Large-scale representative source apportionment studies are uncommon, undermining source contribution studies in India, particularly in high-altitude locations. Kodaikanal is a high-altitude region in India's Western Ghats, with spatial heterogeneity of sources altering chemical complexity; thus, the associated implications are unknown. We conducted the campaign study REBER (Research on Equivalent Black Carbon Monitoring in an Eco-sensitive Region) at three Kodaikanal sites to understand local point sources, characteristics, and distribution of eBC during the winter-to-summer monsoon transition. For two main reasons: to understand the seasonal change of BC since the transition period has the lowest wind speeds and the highest particulate concentrations and is prone to high pollution events most often during seasonal transition months, and to study local pollution since the meridional monsoon and zonal winds in study region weaken whereby the transport of pollutants from ocean to land and vice versa is minimal. The results showed that the eBC mass concentration was 85% higher than in the previous study conducted by Bhaskar et al. (2018) during the monsoon transition period. To determine the ratio of fossil fuel and wood-burning sources, a real-time apportionment model of atmospheric eBC is used. The percentage of wood burning in the background location ranges from 21.12 to 88.98%. Wood burning leads in residential sites with 57.5 ± 7.3%, whereas fossil fuel contribution dominates traffic sites with 69.84 ± 10.2%. Fossil fuel contributions are significant in different characteristics of environments, ranging from 42.5 to 69.84%. The results of the conditional bivariate probability function (CBPF) analysis pointed out a competition between anthropogenic and natural sources to contribute as local sources to the monitoring stations. A scanning electron microscope (SEM) paired with an energy dispersive X-ray (EDX) analysis found that the particle size was 93% relatively large compared to other hill stations in India. The variation in the chemical constituents indicates that the particles originated from various sources.
Collapse
Affiliation(s)
- B Logesh
- Department of Bioenergy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, India
| | - V Karthik
- Department of Bioenergy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, India
| | - B Vijay Bhaskar
- Department of Bioenergy, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625021, India.
| | - E Ebenezer
- Kodaikanal Solar Observatory, Indian Institute of Astrophysics, Kodaikanal, Dindigul, India
| | - M Arun Kumar
- Advanced Environmental Laboratory, Tamil Nadu Pollution Control Board, Coimbatore, 641114, India
| |
Collapse
|
2
|
Roy S, Habib G, Dev R, Joshi S, Qadri AM, Gupta T, Raman RS. Wintertime aerosol properties of urban desert region of western India: Implications in regional climate assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161473. [PMID: 36646216 DOI: 10.1016/j.scitotenv.2023.161473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This study assessed the inter-relation between physiochemical and optical characteristics of aerosols measured at a desert-urban region affected by anthropogenic sources and desert dust during October 2020 to January 2021. Based on horizontal visibility and measured PM2.5 concentration, clear (37 %), light (33 %) and high (31 %) pollution periods were identified. Elemental and organic carbon (50 ± 15 μgm-3; 31 %) and secondary inorganics (53 ± 21 μgm-3; 33 %) dominated the PM2.5 mass (160 ± 4 μgm-3) during high pollution period with low dust (14 ± 7 μgm-3; 8 %) content. Interestingly, the clear pollution period was also influenced by carbonaceous fraction (19 ± 8 μgm-3; 32 %) and secondary inorganics (19 ± 5 μgm-3; 32 %), but the PM2.5 concentrations (59 ± 9 μgm-3) were ∼ one-third as compared to high pollution period. High scattering coefficients were observed which were comparable to highly polluted Indian city like Delhi. An exponential increase in non-absorbing material was observed and showed clear influence on light absorption capacity of EC and dust due to coating/mixing. High absorption Ångström exponent (AAE) >0.6 was observed for the ratio of non-absorbing to light absorbing components (LAC) in the range of 1-2.5 and EC/PM2.5 fraction of 7-14 %. While further increase in non-absorbing to absorbing components ratio > 4 and low amount of EC (<4 %) tend to decrease AAE below 0.4. Higher mass absorption cross-section (>30 m2g-1 of EC) was observed when 4-10 % EC fraction of PM2.5 associated with 1.5-3.5 times non-absorbing components to total absorbing components. Likewise, absorption enhanced by three to five folds compared to uncoated EC for low EC fraction (3-6 %) in PM2.5, but high non-absorbing to absorbing component ratio (>2.5). Interestingly, absorption was minimally amplified for nominal coating fraction associated with significant core materials or vice-versa. These findings have implications not only in regional climate assessment but also for other regions with comparable geography and source-mixes.
Collapse
Affiliation(s)
- Sayantee Roy
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Gazala Habib
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Rishabh Dev
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Swati Joshi
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Adnan Mateen Qadri
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India; Department of Civil Engineering, APTL at Centre for Environmental Science and Engineering (CESE), Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Ramya Sunder Raman
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India; Center for Research on Environment and Sustainable Technologies, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
3
|
Sheoran R, Dumka UC, Hyvärinen AP, Sharma VP, Tiwari RK, Lihavainen H, Virkkula A, Hooda RK. Assessment of carbonaceous aerosols at Mukteshwar: A high-altitude (~2200 m amsl) background site in the foothills of the Central Himalayas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161334. [PMID: 36596417 DOI: 10.1016/j.scitotenv.2022.161334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The present study examined the equivalent black carbon (eBC) mass concentrations measured over 10.5 years (September 2005-March 2016) using a 7-wavelength Aethalometer (AE-31) at Mukteshwar, a high-altitude and regional background site in the foothills of Indian central Himalayas. The total spectral absorption coefficient (babs) was divided into three categories: black carbon (BC) and brown carbon (BrC); fossil fuels (FF) and wood/biomass burning (WB/BB); and primary and secondary sources. At the wavelength of 370 nm, a significant BrC contribution (25 %) to the total babs is identified, characterized by a pronounced seasonal variation with winter (December-January-February) maxima (31 %) and post-monsoon (October and November) minima (20 %); whereas, at 660 nm, the contribution of BrC is dramatically less (9 %). Climatologically, the estimated BCFF at 880 nm ranges from 0.25 ± 0.19 μg m-3 in July to 1.17 ± 0.80 μg m-3 in May with the annual average of 0.67 ± 0.63 μg m-3, accounting for 79 % of the BC mass. The maximum BCFF/BC fraction reaches its peak value during the monsoon (July and August, 85 %), indicating the dominance of local traffic emissions due to tourism activities. Further, the highest BCWB concentration observed during pre-monsoon (March-May) suggests the influence of local forest fires along with long-range transported aerosols from the low-altitude plains. The increased contribution of BrC (26 % at 370 nm) and WB absorption (61 % at 370 nm) to the total absorption at the shorter wavelengths suggests that wood burning is one of the major sources of BrC emissions. Secondary BrC absorption accounts for 24 % [91 %] of the total absorption [BrC absorption] at 370 nm, implying the dominance of secondary sources in BrC formation. A trend analysis for the measured BC concentration shows a statistically significant increasing trend with a slope of 0.02 μgm-3/year with a total increase of about 22 % over the study period. A back trajectory-based receptor model, potential source contribution function (PSCF), was used to identify the potential regional source region of BC. The main source regions of BC are the northwest states of India in the IGP region and the northeast Pakistan region.
Collapse
Affiliation(s)
- Rahul Sheoran
- Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India; Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273009, India.
| | - U C Dumka
- Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India.
| | - A P Hyvärinen
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland
| | - V P Sharma
- The Energy and Resources Institute, New Delhi, India
| | - Rakesh K Tiwari
- Department of Physics, D.D.U. Gorakhpur University, Gorakhpur 273009, India
| | - H Lihavainen
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland; Svalbard Integrated Arctic Earth Observing System, 156, 9171 Longyearbyen, Norway
| | - A Virkkula
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland
| | - Rakesh K Hooda
- Finnish Meteorological Institute, Erik Palménin Aukio 1, FI-00560 Helsinki, Finland.
| |
Collapse
|
4
|
Chemical Composition and Source Apportionment of Total Suspended Particulate in the Central Himalayan Region. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study analyzes data from total suspended particulate (TSP) samples collected during 3 years (2005–2008) at Nainital, central Himalayas, India and analyzed for carbonaceous aerosols (organic carbon (OC) and elemental carbon (EC)) and inorganic species, focusing on the assessment of primary and secondary organic carbon contributions (POC, SOC, respectively) and on source apportionment by positive matrix factorization (PMF). An average TSP concentration of 69.6 ± 51.8 µg m−3 was found, exhibiting a pre-monsoon (March–May) maximum (92.9 ± 48.5 µg m−3) due to dust transport and forest fires and a monsoon (June–August) minimum due to atmospheric washout, while carbonaceous aerosols and inorganic species expressed a similar seasonality. The mean OC/EC ratio (8.0 ± 3.3) and the good correlations between OC, EC, and nss-K+ suggested that biomass burning (BB) was one of the major contributing factors to aerosols in Nainital. Using the EC tracer method, along with several approaches for the determination of the (OC/EC)pri ratio, the estimated SOC component accounted for ~25% (19.3–29.7%). Furthermore, TSP source apportionment via PMF allowed for a better understanding of the aerosol sources in the Central Himalayan region. The key aerosol sources over Nainital were BB (27%), secondary sulfate (20%), secondary nitrate (9%), mineral dust (34%), and long-range transported mixed marine aerosol (10%). The potential source contribution function (PSCF) and concentration weighted trajectory (CWT) analyses were also used to identify the probable regional source areas of resolved aerosol sources. The main source regions for aerosols in Nainital were the plains in northwest India and Pakistan, polluted cities like Delhi, the Thar Desert, and the Arabian Sea area. The outcomes of the present study are expected to elucidate the atmospheric chemistry, emission source origins, and transport pathways of aerosols over the central Himalayan region.
Collapse
|
5
|
Impact of Aerosol and Cloud on the Solar Energy Potential over the Central Gangetic Himalayan Region. REMOTE SENSING 2021. [DOI: 10.3390/rs13163248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examine the impact of atmospheric aerosols and clouds on the surface solar radiation and solar energy at Nainital, a high-altitude remote location in the central Gangetic Himalayan region (CGHR). For this purpose, we exploited the synergy of remote-sensed data in terms of ground-based AERONET Sun Photometer and satellite observations from the MODerate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat Second Generation (MSG), with radiative transfer model (RTM) simulations and 1 day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). Clouds and aerosols are one of the most common sources of solar irradiance attenuation and hence causing performance issues in the photovoltaic (PV) and concentrated solar power (CSP) plant installations. The outputs of RTM results presented with high accuracy under clear, cloudy sky and dust conditions for global horizontal (GHI) and beam horizontal irradiance (BHI). On an annual basis the total aerosol attenuation was found to be up to 105 kWh m−2 for the GHI and 266 kWh m−2 for BHI, respectively, while the cloud effect is much stronger with an attenuation of 245 and 271 kWh m−2 on GHI and BHI. The results of this study will support the Indian solar energy producers and electricity handling entities in order to quantify the energy and financial losses due to cloud and aerosol presence.
Collapse
|
6
|
Assessment of the COVID-19 Lockdown Effects on Spectral Aerosol Scattering and Absorption Properties in Athens, Greece. ATMOSPHERE 2021. [DOI: 10.3390/atmos12020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
COVID-19 is evolving into one of the worst pandemics in recent history, claiming a death toll of over 1.5 million as of December 2020. In an attempt to limit the expansion of the pandemic in its initial phase, nearly all countries imposed restriction measures, which resulted in an unprecedented reduction of air pollution. This study aims to assess the impact of the lockdown effects due to COVID-19 on in situ measured aerosol properties, namely spectral-scattering (bsca) and absorption (babs) coefficients, black carbon (BC) concentrations, single-scattering albedo (SSA), scattering and absorption Ångström exponents (SAE, AAE) in Athens, Greece. Moreover, a comparison is performed with the regional background site of Finokalia, Crete, for a better assessment of the urban impact on observed differences. The study examines pre-lockdown (1–22 March 2020), lockdown (23 March–3 May 2020) and post-lockdown (4–31 May 2020) periods, while the aerosol properties are also compared with a 3–4 year preceding period (2016/2017–2019). Comparison of meteorological parameters in Athens, between the lockdown period and respective days in previous years, showed only marginal variation, which is not deemed sufficient in order to justify the notable changes in aerosol concentrations and optical properties. The largest reduction during the lockdown period was observed for babs compared to the pre-lockdown (−39%) and to the same period in previous years (−36%). This was intensified during the morning traffic hours (−60%), reflecting the large decrease in vehicular emissions. Furthermore, AAE increased during the lockdown period due to reduced emissions from fossil-fuel combustion, while a smaller (−21%) decrease was observed for bsca along with slight increases (6%) in SAE and SSA values, indicating that scattering aerosol properties were less affected by the decrease in vehicular emissions, as they are more dependent on regional sources and atmospheric processing. Nighttime BC emissions related to residential wood-burning were slightly increased during the lockdown period, with respect to previous-year means. On the contrary, aerosol and pollution changes during the lockdown period at Finokalia were low and highly sensitive to natural sources and processes.
Collapse
|