1
|
Zhang M, Choi W, Kim M, Choi J, Zang X, Ren Y, Chen H, Tsukruk V, Peng J, Liu Y, Kim DH, Lin Z. Recent Advances in Environmentally Friendly Dual-crosslinking Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318035. [PMID: 38586975 DOI: 10.1002/anie.202318035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/18/2024] [Accepted: 04/08/2024] [Indexed: 04/09/2024]
Abstract
Environmentally friendly crosslinked polymer networks feature degradable covalent or non-covalent bonds, with many of them manifesting dynamic characteristics. These attributes enable convenient degradation, facile reprocessibility, and self-healing capabilities. However, the inherent instability of these crosslinking bonds often compromises the mechanical properties of polymer networks, limiting their practical applications. In this context, environmentally friendly dual-crosslinking polymer networks (denoted EF-DCPNs) have emerged as promising alternatives to address this challenge. These materials effectively balance the need for high mechanical properties with the ability to degrade, recycle, and/or self-heal. Despite their promising potential, investigations into EF-DCPNs remain in their nascent stages, and several gaps and limitations persist. This Review provides a comprehensive overview of the synthesis, properties, and applications of recent progress in EF-DCPNs. Firstly, synthetic routes to a rich variety of EF-DCPNs possessing two distinct types of dynamic bonds (i.e., imine, disulfide, ester, hydrogen bond, coordination bond, and other bonds) are introduced. Subsequently, complex structure- and dynamic nature-dependent mechanical, thermal, and electrical properties of EF-DCPNs are discussed, followed by their exemplary applications in electronics and biotechnology. Finally, future research directions in this rapidly evolving field are outlined.
Collapse
Affiliation(s)
- Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Woosung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Minju Kim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Choi
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xuerui Zang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Vladimir Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yijiang Liu
- College of Chemistry, Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, Hunan Province, 411105, China
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
2
|
Liu G, Liu L, Wang X, Yu J, Ding B. A Fiber Sliding-Orientation Based Micromechanics Failure Model for Melt-Blown Nonwovens. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14616-14625. [PMID: 37795881 DOI: 10.1021/acs.langmuir.3c01853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The mechanical model of melt-blown nonwovens (MNs) serves as the foundation for performance optimization, which can offer helpful guidance for product material selection, structural design, and cost control. However, it is challenging to describe the micromechanics failure mechanism of MNs using the traditional mechanical model, which aims to match the model curve with the experimental result at the macrolevel. Herein, a micromechanics failure model for MNs based on sliding-orientation competition is developed. Through in situ observations of fiber position changes and the fluctuation of stress-strain curves, fiber sliding and orientation are introduced into the failure process of MNs. Due to fiber bonding and static friction, only orientation happens during the first stage of stretching. In dramatic contrast, the fibers will slide and orient in the second stage of stretching to change their positions in response to the external force. Sliding friction, fiber bonding, and static friction make up the stress of MNs, and the conflict of fiber sliding and orientation causes variations in the stress. The model has been successfully applied to polylactic acid (PLA) MNs, which proves the effectiveness of the model in MNs.
Collapse
Affiliation(s)
- Gaohui Liu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Li Liu
- Tianfangbiao Standardization Certification and Testing Co., Ltd., Tianjin 300300, China
| | - Xianfeng Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Wu S, Jiang H, Lu J. Adsorptive performance and mechanism exploration of l-lysine functionalized celluloses for enhanced removal of Pb(II) from aqueous medium. Int J Biol Macromol 2023; 242:124997. [PMID: 37244335 DOI: 10.1016/j.ijbiomac.2023.124997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
In this study, two novel biosorbents of l-lysine grafted cellulose (L-PCM, L-TCF) were prepared for Pb(II) removal from aqueous solutions. Various adsorption parameters were surveyed, such as adsorbent dosages, initial concentration of Pb(II), temperature and pH, using adsorption techniques. At normal temperature, less adsorbent can achieve better adsorption capacity (89.71 ± 0.27 mg g-1 with 0.5 g L-1 of L-PCM, 16.84 ± 0.02 mg g-1 with 3.0 g L-1 of L-TCF). The pH range of application for L-PCM was 4-12 and that of L-TCF was 4-13. The adsorption of Pb(II) by biosorbents went through the boundary layer diffusion stage and void diffusion stage. The adsorption mechanism was chemisorption based on multilayer heterogeneous adsorption. The pseudo-second-order model fitted the adsorption kinetics perfectly. The Freundlich isotherm model adequately described Multimolecular equilibrium relationship between Pb(II) and biosorbents; the predicted maximum adsorption capacities of the two adsorbents were 904.12 and 46.74 mg g-1, respectively. The results showed that the adsorption mechanism was the electrostatic attraction between Pb(II) and -COOH and the complexation between Pb(II) and -NH2. This work demonstrated that l-lysine modified cellulose-based biosorbents have great potential in the field of Pb(II) removal from aqueous solutions.
Collapse
Affiliation(s)
- Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| | - Haoyuan Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Jilai Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
4
|
Shang ZT, Li TM, Han JH, Yu F, Li B. Zirconium Metal-Organic Framework bearing V-shape letrozole dicarboxylic acid for versatile fluorescence detection. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Divalent metal ion removal from simulated water using sustainable starch aerogels: Effect of crosslinking agent concentration and sorption conditions. Int J Biol Macromol 2023; 226:628-645. [PMID: 36464191 DOI: 10.1016/j.ijbiomac.2022.11.308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This paper evaluates corn starch aerogels, studying different crosslinking agent (trisodium citrate) concentrations (1:1, 1:1.5, and 1:2) and sorption conditions (contact time, adsorbent weight, and initial concentration) regarding the potentially toxic elements (PTEs) [Cd(II) or Zn(II)] adsorption of the aqueous systems. Besides, other properties of aerogels, such as structural properties, specific surface area, and mechanical performance, were evaluated. For adsorption results, better values were observed in adsorption capacity and efficiency for the initial concentration of 100 ppm. In addition, an adsorption time of 12 h and an adsorbent weight of 3.0 g obtained better results due to the possible balance in this time and the high specific surface area available for Cd(II) adsorption. As for the type of adsorbent, the Aero 1:1.5 sample (intermediate crosslinking agent concentration) obtained better results, possibly due to the high porosity, smaller pore sizes, high pore density, and high specific surface area (198 m2·g-1). In addition, hydroxyl groups in the starch aerogel removed Cd(II) ions with 30 % adsorption efficiency. Lastly, Aero 1:1.5 obtained a high mechanical strength at compression and a satisfactory compressive modulus. In contrast, starch aerogels did not absorb the Zn(II) ion.
Collapse
|
6
|
Liu PD, Liu AG, Wang PM, Chen Y, Bao Li. Smart crystalline frameworks constructed with bisquinoxaline-based component for multi-stimulus luminescent sensing materials. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2022. [DOI: 10.1016/j.cjsc.2022.100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Cheng S, Xie P, Yu Z, Gu R, Wu W. Hydroxyl-modified zirconia/porous carbon nanocomposite used as a highly efficient and renewable adsorbent for removal of carbamazepine from water. ENVIRONMENTAL RESEARCH 2022; 214:114030. [PMID: 35926575 DOI: 10.1016/j.envres.2022.114030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) derived metal oxides/porous carbon nanocomposites were used as adsorbents to remove pollutants from wastewater. The adsorption performance of the metal oxides/porous carbon nanocomposites could be improved by introducing functional groups. In this study, hydroxyl-modified zirconia/porous carbon nanocomposite (C-UiO-66-OH) was prepared and tested, choosing carbamazepine as a typical pollutant. The results showed that the adsorption capacity (186.21 mg g-1) of C-UiO-66-OH was 6.96 times to that of normal UiO-66. The Langmuir isotherm model and pseudo-first-order kinetic model was well fit the adsorption process. The thermodynamic parameters indicated that the adsorption process was spontaneous and endothermic. The adsorbent regeneration could be accomplished by washing C-UiO-66-OH with ethanol and DI water. The good adsorption/desorption performance comes from the synergistic effect of (EDA) interaction and hydrogen bond between C-UiO-66-OH and CBZ molecule. A membrane prepared by immobilizing C-UiO-66-OH into melamine foam (MF) with sodium alginate (SA) was also investigated for CBZ adsorption. The results indicated the excellent removal efficiency (86.0%) and good regeneration of the prepared membrane. Therefore, this paper provides an efficient and applicable way to remove CBZ from water.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Pengfei Xie
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhen Yu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Qiu Z, Fu K, Yu D, Luo J, Shang J, Luo S, Crittenden JC. Radix Astragali residue-derived porous amino-laced double-network hydrogel for efficient Pb(II) removal: Performance and modeling. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129418. [PMID: 35780735 DOI: 10.1016/j.jhazmat.2022.129418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Valorizing solid waste for heavy metal adsorption is highly desirable to avoid global natural resources depletion. In this study, we developed a new protocol to valorize Radix Astragali residue (one of the Chinese medicine residues) into a low-cost, chemically robust, and highly permeable (ca. 90%) amino-laced porous double-network hydrogel (NH2-CNFs/PAA) for efficient Pb(II) adsorption. The NH2-CNFs/PAA showed (i) excellent Pb(II) adsorption capacity (i.e., 994.5 mg g-1, ~4.8 mmol g-1), (ii) fast adsorption kinetics (kf = 2.01 ×10-5 m s-1), (iii) broad working pH range (2.0-6.0), and (iv) excellent regeneration capability (~15 cycles). (v) excellent performance in various real water matrices on Pb(II) removal. Moreover, its high selectivity (distribution coefficient Kd ~2.4 ×106 mL g-1) toward Pb(II) was owing to the present of abundant amino groups (-NH2). Furthermore, the fix-bed column test indicated the NH2-CNFs/PAA can effectively remove 114.6 bed volumes (influent concentration ~5000 μg L-1) with an enrichment factor 10.9. The full-scale system modeling (i.e., pore surface diffusion model (PSDM)) has been applied to predict the NH2-CNFs/PAA performance on Pb(II) removal. Overall, we have provided an alternative "win-win" scenario that can resolve the Chinese medicine residues disposal issue by valorizing it into high performance gel-based adsorbents for efficient heavy metal removal.
Collapse
Affiliation(s)
- Zhiyuan Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaixing Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jingge Shang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
9
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
10
|
Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int J Biol Macromol 2022; 218:601-633. [PMID: 35902015 DOI: 10.1016/j.ijbiomac.2022.07.168] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022]
Abstract
Gelatin's versatile functionalization offers prospects of facile and effective crosslinking as well as combining with other materials (e.g., metal nanoparticles, carbonaceous, minerals, and polymeric materials exhibiting desired functional properties) to form hybrid materials of improved thermo-mechanical, physio-chemical and biological characteristics. Gelatin-based hydrogels (GHs) and (nano)composite hydrogels possess unique functional features that make them appropriate for a wide range of environmental, technical, and biomedical applications. The properties of GHs could be balanced by optimizing the hydrogel design. The current review explores the various crosslinking techniques of GHs, their properties, composite types, and ultimately their end-use applications. GH's ability to absorb a large volume of water within the gel network via hydrogen bonding is frequently used for water retention (e.g., agricultural additives), and absorbency towards targeted chemicals from the environment (e.g., as wound dressings for absorbing exudates and in water treatment for absorbing pollutants). GH's controllable porosity makes its way to be used to restrict access to chemicals entrapped within the gel phase (e.g., cell encapsulation), regulate the release of encapsulated cargoes within the GH (e.g., drug delivery, agrochemicals release). GH's soft mechanics closely resembling biological tissues, make its use in tissue engineering to deliver suitable mechanical signals to neighboring cells. This review discussed the GHs as potential materials for the creation of biosensors, drug delivery systems, antimicrobials, modified electrodes, water adsorbents, fertilizers and packaging systems, among many others. The future research outlooks are also highlighted.
Collapse
|
11
|
Wang D, Li J, Yao X, Wu Q, Zhang J, Ye J, Xu H, Wu Z, Cai D. Tobacco Waste Liquid-Based Organic Fertilizer Particle for Controlled-Release Fulvic Acid and Immobilization of Heavy Metals in Soil. NANOMATERIALS 2022; 12:nano12122056. [PMID: 35745398 PMCID: PMC9227108 DOI: 10.3390/nano12122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023]
Abstract
Every year, a large amount of tobacco waste liquid (TWL) is discharged into the environment, resulting in serious pollution for the environment. In this work, a TWL-based particle (OACT) was fabricated by CaO, attapulgite (ATP), and TWL, and, then, OACT was coated by amino silicon oil (ASO) to form OACT@ASO. Therein, OACT@ASO had high controlled-release ability for fulvic acid (FA), because of the nanonetworks structure for ATP and the high content of FA in TWL. The release ratio (RR) of FA from OACT@ASO reached 94% at 75 h in deionized water, and 23% at 32 d in silica sand. Furthermore, the release mechanism of FA from OACT@ASO was consistent with the First-order law. Additionally, OACT@ASO also possessed high immobilization capacity for Cu(II), Cd(II), and Pb(II) (CCP) in soil. Notably, a pot experiment indicated that OACT@ASO could facilitate the growth of pakchoi seedlings and decrease the absorption of CCP by pakchoi seedlings. Thus, this study provides a new kind of organic fertilizer which could not only release FA, but also immobilize CCP in soil.
Collapse
Affiliation(s)
- Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (D.W.); (J.L.); (X.Y.); (J.Z.); (J.Y.); (H.X.)
| | - Jiangshan Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (D.W.); (J.L.); (X.Y.); (J.Z.); (J.Y.); (H.X.)
| | - Xia Yao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (D.W.); (J.L.); (X.Y.); (J.Z.); (J.Y.); (H.X.)
| | - Qingchuan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Q.W.); (Z.W.)
| | - Jing Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (D.W.); (J.L.); (X.Y.); (J.Z.); (J.Y.); (H.X.)
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (D.W.); (J.L.); (X.Y.); (J.Z.); (J.Y.); (H.X.)
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (D.W.); (J.L.); (X.Y.); (J.Z.); (J.Y.); (H.X.)
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (Q.W.); (Z.W.)
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (D.W.); (J.L.); (X.Y.); (J.Z.); (J.Y.); (H.X.)
- Correspondence:
| |
Collapse
|
12
|
Kost B, Basko M, Bednarek M, Socka M, Kopka B, Łapienis G, Biela T, Kubisa P, Brzeziński M. The influence of the functional end groups on the properties of polylactide-based materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Kheyrabadi FB, Zare EN. Antimicrobial nanocomposite adsorbent based on poly(meta-phenylenediamine) for remediation of lead (II) from water medium. Sci Rep 2022; 12:4632. [PMID: 35301394 PMCID: PMC8931104 DOI: 10.1038/s41598-022-08668-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
In this study, poly(m-phenylenediamine)@ZnO (PmPDA@ZnO) nanocomposite was fabricated by in-situ chemical oxidative polymerization for the effective lead(II) removal from aqueous solutions. PmPDA@ZnO was characterized by several instrumental methods like FTIR, XRD, EDX, TGA, FESEM, TEM, zeta potential, and BET. The TEM images showed a core-shell-like structure for the PmPDA@ZnO nanocomposite. TGA results showed that the thermal stability of the PmPDA@ZnO nanocomposite was higher than the PmPDA. The maximum adsorption of lead (II) onto PmPDA@ZnO nanocomposite was obtained at pH 6, adsorbent dosage 60 mg, lead(II) ion concentration 90 mg/L, and agitation time 90 min. Langmuir and Freundlich's isotherm models were evaluated to simulate the lead(II) sorption via empirical data. Langmuir's model was in good agreement with empirical data with a maximum adsorption capacity (Qmax) of 77.51 mg/g. The kinetic data adsorption fitted best the pseudo-second-order model. The values of thermodynamic parameters of ΔS° and ΔH° were obtained 0.272 J/mol K, and 71.35 kJ/mol, respectively. The spontaneous and endothermic behavior of the adsorption process was confirmed by the negative and positive response of ΔG° and ΔH°, respectively. Moreover, the addition of coexisting cations e.g. cobalt (II), nickel (II), calcium (II), and copper (II) had no significant effect on the removal efficiency of lead(II). Adsorption-desorption studies showed that the PmPDA@ZnO nanocomposite can be remarkably regenerated and reused after three sequential runs without a significant decline in its adsorption performance. The antimicrobial activities of PmPDA@ZnO nanocomposite were evaluated against Escherichia coli and Staphylococcus aureus bacteria species. These results confirmed that the PmPDA@ZnO nanocomposite could be a good candidate for water decontamination.
Collapse
|
14
|
Li J, Yang ZL, Ding T, Song YJ, Li HC, Li DQ, Chen S, Xu F. The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes. Carbohydr Polym 2022; 276:118789. [PMID: 34823799 DOI: 10.1016/j.carbpol.2021.118789] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Natural macromolecules have been used to adsorb pollutants including heavy metal ions and organic dyes due to low-cost, accessible, biodegradable, and eco-friendly advantages. Pectin, an important natural polymer, possesses abundant carboxyl and hydroxyl functional groups that can interact with the metal and organic cations via electrostatic interaction; as well as be modified by other chemicals for preparing hybrid and composite materials. The resultant materials have been employed to remove pollutants from aqueous solution; the importance of chemical composition was unlocked. Here, we reviewed contaminant removal by pectin, and pectin-based hybrid and composite materials, and highlighted the role of functional groups on pollutant removal. The removal of heavy metal ions was mainly due to surface coordination, while that of organic cations to electrostatic interactions of the functional groups. Moreover, the influence of initial contaminant concentration was critically discussed. The comprehensive review can provide valuable information on pectin and its application in contaminant removal.
Collapse
Affiliation(s)
- Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Zai-Lei Yang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China
| | - Yi-Jia Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Hai-Chao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi, Xinjiang 830052, PR China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|