1
|
Ma Z, Feng H, Yang C, Ma X, Li P, Feng Z, Zhang Y, Zhao L, Zhou J, Xu X, Zhu H, Wei F. Integrated microbiology and metabolomics analysis reveal responses of cotton rhizosphere microbiome and metabolite spectrum to conventional seed coating agents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122058. [PMID: 37330187 DOI: 10.1016/j.envpol.2023.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fludioxonil (FL) and metalaxyl-M·fludioxonil·azoxystrobin (MFA) are conventional seed coating agents for controlling cotton seedling diseases. However, their effects on seed endophytic and rhizosphere microecology are still poorly understood. This study aimed to assess the effects of FL and MFA on cotton seed endophytes, rhizosphere soil enzymatic activities, microbiome and metabolites. Both seed coating agents significantly changed seed endophytic bacterial and fungal communities. Growing coated seeds in the soils originating from the Alar (AL) and Shihezi (SH) region inhibited soil catalase activity and decreased both bacterial and fungal biomass. Seed coating agents increased rhizosphere bacterial alpha diversity for the first 21 days but decreased fungal alpha diversity after day 21 in the AL soil. Seed coating reduced the abundance of a number of beneficial microorganisms but enriched some potential pollutant-degrading microorganisms. Seed coating agents may have affected the complexity of the co-occurrence network of the microbiome in the AL soil, reducing connectivity, opposite to what was observed in the SH soil. MFA had more pronounced effects on soil metabolic activities than FL. Furthermore, there were strong links between soil microbial communities, metabolites and enzymatic activities. These findings provide valuable information for future research and development on application of seed coatings for disease management.
Collapse
Affiliation(s)
- Zheng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Chuanzhen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaojie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Peng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zili Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Jinglong Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Xiangming Xu
- NIAB, East Malling, West Malling, ME19 6BJ, Kent, UK
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Feng Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| |
Collapse
|
2
|
Chi X, Zhao Z, Han Q, Yan H, Ji B, Chai Y, Li S, Liu K. Insights into autotrophic carbon fixation strategies through metagonomics in the sediments of seagrass beds. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106002. [PMID: 37119661 DOI: 10.1016/j.marenvres.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 04/23/2023] [Indexed: 06/11/2023]
Abstract
Seagrass beds contributes up to 10% ocean carbon storage. Carbon fixation in seagrass bed greatly affect global carbon cycle. Currently, six carbon fixation pathways are widely studied: Calvin, reductive tricarboxylic acid (rTCA), Wood-Ljungdahl (WL), 3-hydroxypropionate (3HP), 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) and dicarboxylate/4-hydroxybutyrate (DC/4-HB). Despite the knowledges about carbon fixation increase, the carbon fixation strategies in seagrass bed sediment remain unexplored. We collected seagrass bed sediment samples from three sites with different characteristics in Weihai, a city in Shandong, China. The carbon fixation strategies were investigated through metagenomics. The results exhibited that five pathways were present, of which Calvin and WL were the most dominant. The community structure of microorganisms containing the key genes of these pathways were further analyzed, and those dominant microorganisms with carbon fixing potential were revealed. Phosphorus significantly negatively corelated with those microorganisms. This study provides an insight into the strategies of carbon fixation in seagrass bed sediments.
Collapse
Affiliation(s)
- Xiangqun Chi
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zhiyi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qiuxia Han
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Huaxiao Yan
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Bei Ji
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yating Chai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Ma Y, Wu X, Wang T, Zhou S, Cui B, Sha H, Lv B. Elucidation of aniline adsorption-desorption mechanism on various organo-mineral complexes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39871-39882. [PMID: 36600159 DOI: 10.1007/s11356-022-25096-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Complexes formed by organic matter and clay minerals, which are active components of soil systems, play an important role in the migration and transformation of pollutants in nature. In this study, humic-acid-montmorillonite (HA-MT) and humic-acid-kaolin (HA-KL) complexes were prepared, and their structures before and after the adsorption of aniline were analyzed. The aniline adsorption-desorption characteristics of complexes with different clay minerals and varying HA contents were explored using the static adsorption-desorption equilibrium method. Compared with the pristine clay minerals, the flaky and porous structure of the complexes and the aromaticity were enhanced. The adsorption of aniline on the different clay mineral complexes was nonlinear, and the adsorption capacity increased with increasing HA content. Additionally, the adsorption capacity of HA-MT was higher than that of HA-KL. After adsorption, the specific surface area of the complexes decreased, the surfaces became more complicated, and the aromaticity decreased because aniline is primarily adsorption onto the complexes via aromatic rings. Aniline was adsorbed onto the complexes via spontaneous exothermic physical adsorption. The amount of aniline desorbed from the complexes increased with increasing HA content, and a lag in desorption was observed, with a greater lag for HA-KL than for HA-MT.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Xinyi Wu
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Tong Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Shengkun Zhou
- Beijing Solid Waste Treatment Co., Ltd, Beijing, 100101, People's Republic of China
| | - Biying Cui
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Haoqun Sha
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, People's Republic of China
| | - Bowen Lv
- Policy Research Center for Environment and Economy, Ministry of Ecology and Environment, Beijing, 100029, People's Republic of China.
| |
Collapse
|
4
|
Wang J, Zhang Y, Ding Y, Song H, Liu T, Zhang Y, Xu W, Shi Y. Comparing the indigenous microorganism system in typical petroleum-contaminated groundwater. CHEMOSPHERE 2023; 311:137173. [PMID: 36356804 DOI: 10.1016/j.chemosphere.2022.137173] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The environmental conditions at a contaminated site will impact on the indigenous microbial communities, with implications for the removal of pollutants. An analysis of the characteristics of microbial communities in petroleum-contaminated groundwater can give insights into the relationships between microbial community and environmental factors, and provide guidance about how microbes can be used to remediate and regulate petroleum-contaminated groundwater. This study focuses on two petroleum-contaminated sites in northeast China, the physico-chemical-biological changes in petroleum-contaminated groundwater were analyzed, the response relationship between hydro-chemical indicators and microbial communities was characterized, and the bioindicator that can reflect the petroleum contamination status were established for environmental monitoring and management. The results showed that Proteobacteria was the dominant bacteria in petroleum-contaminated groundwater, with a relative abundance of 42.45%-91.19%. pH, TDS, DO, NO3-, NO2-, SO42-, NH4+, Al, and Mn have significant effects on microbial community. The effect of petroleum pollutants on microbial communities is not only related to the concentration and composition of the pollutants themselves, but also could indirectly affect microbial communities by changing the content of inorganic electron acceptor components such as iron, manganese, sulfate and nitrate in groundwater, and this indirect effect is significantly greater than the direct impact of pollutants on microbial communities. In petroleum-contaminated groundwater, the dominant genera (Polaromonas, Caulobacter) and microbial metabolic functions (methanol oxidation, methylotrophy, ureolysis, and reductive biosynthesis) of the indigenous microbial community can be used as bioindicators to indicate petroleum contamination status. The higher abundance of these bioindicators in petroleum-contaminated groundwater, the more serious petroleum pollution in groundwater.
Collapse
Affiliation(s)
- Jili Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuling Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Yang Ding
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Hewei Song
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Ting Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yi Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weiqing Xu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yujia Shi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun, 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
5
|
Effect of Cucurbit[7]uril on Adsorption of Aniline Derivatives at Quartz. COATINGS 2022. [DOI: 10.3390/coatings12081100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The adsorption behavior of small molecules at solid–liquid interfaces have become an important research topic in recent years. For example, small molecules of aniline pollutants will adsorb on solid surfaces with a massive discharge of industrial wastewater and are difficult to separate. Therefore, their adsorption and desorption on solid surfaces have become an important scientific problem. In this study, the interactions of cucurbit[7]uril (Q[7]) with 4,4′-diaminodiphenylmethane (MDA) and benzidine (AN) are studied using 1H NMR, UV-Vis spectrometry and fluorescence spectroscopy. The results show that Q[7] forms an inclusion complex with MDA and AN. According to the results of Quartz Crystal Microbalance with Dissipation (QCM-D), MDA adsorbs onto a quartz surface and forms a viscous adsorption layer on it. The AN adsorbs on the quartz surface and forms a rigid adsorption film on it. Q[7] can reduce the adsorption of MDA on the quartz surface and increases the adsorption of AN on it. Through the dynamic adsorption experiments, we find that Q[7] has a desorption effect on MDA molecules adsorbed on the quartz surface. An Atomic Force Microscope (AFM) is used to measure the morphological changes in the adsorption film before and after Q[7] makes contact with the quartz surface, and it proves that Q[7] has a desorption effect on MDA molecules adsorbed on the surface.
Collapse
|
6
|
Liu LH, Yuan T, Zhang JY, Tang GX, Lü H, Zhao HM, Li H, Li YW, Mo CH, Tan ZY, Cai QY. Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150310. [PMID: 34583082 DOI: 10.1016/j.scitotenv.2021.150310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Phthalates (PAEs) accumulated in agricultural soils and rice have increased human exposure risks. Microbial degradation could efficiently reduce the residue of organic pollutants in soil and crop plants. Here, we hypothesized that endophytic bacteria from wild rice have the potential for degradation of PAEs and plant growth promoting. The endophytic bacterial community and functional diversity in wild rice (Oryza meridionalis) were analyzed for the first time, and the potential for PAE degradation and plant growth promoting by endophytes were investigated. The results of Illumina high-throughput sequencing revealed that abundant endophytes inhabited in wild rice with Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria being the dominant phyla. Endophytic bacterial diversity and complexity were confirmed by isolation and clustering of isolates. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that endophytes exerted diverse functions such as plant growth promoting, xenobiotics biodegradation, pollution remediation and bacterial chemotaxis. Pure culture experiment showed that 30 isolated endophytic strains exhibited in vitro plant growth promoting activities, and rice plants inoculated with these strains confirmed their growth promoting abilities. Some endophytic strains were capable of efficiently degrading PAEs, with the highest removal percentage of di-n-butyl phthalate (DBP) up to 96.1% by Bacillus amyloliquefaciens strain L381 within 5 days. Synthetic community F and strain L381 rapidly removed DBP from soil (removing 91.0%-99.2% within 10 d and from rice plant slurry (removing 93.4%-99.2% within 5 d). These results confirmed the hypothesis and demonstrated the diversity of endophytic bacteria in wild rice with diverse functions, especially for plant growth promoting and removing PAEs. These multifunctional endophytic bacteria provided good alternatives to reduce PAE accumulation in crops and increase yield.
Collapse
Affiliation(s)
- Li-Hui Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Tao Yuan
- Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Jia-Yan Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Guang-Xuan Tang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhi-Yuan Tan
- Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|