1
|
Guan X, Xu Y, Meng Y, Xu W, Yan D. Quantifying multi-dimensional services of water ecosystems and breakpoint-based spatial radiation of typical regulating services considering the hierarchical clustering-based classification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119852. [PMID: 38159309 DOI: 10.1016/j.jenvman.2023.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
This study proposes a set of water ecosystem services (WES) research system, including classification, benefit quantification and spatial radiation effect, with the goal of promoting harmonious coexistence between humans and nature, as well as providing a theoretical foundation for optimizing water resources management. Hierarchical cluster analysis was applied to categorize WES taking in to account the four nature constraints of product nature, energy flow relationships, circularity, and human social utility. A multi-dimensional benefit quantification methodology system for WES was constructed by combining the emergy theory with multidisciplinary methods of ecology, economics, and sociology. Based on the theories of spatial autocorrelation and breaking point, we investigated the spatial radiation effects of typical services in the cyclic regulation category. The proposed methodology has been applied to Luoyang, China. The results show that the Resource Provisioning (RP) and Cultural Addition (CA) services change greatly over time, and drive the overall WES to increase and then decrease. The spatial and temporal distribution of water resources is uneven, with WES being slightly better in the southern region than the northern region. Additionally, spatial radiation effects of typical regulating services are most prominent in S County. This finding suggests the establishment of scientific and rational intra-basin or inter-basin water management systems to expand the beneficial impacts of water-rich areas on neighboring regions.
Collapse
Affiliation(s)
- Xinjian Guan
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, PR China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yingjun Xu
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, PR China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yu Meng
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, PR China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| | - Wenjing Xu
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, PR China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Denghua Yan
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, PR China; Yellow River Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| |
Collapse
|
2
|
Alshehri K, Gao Z, Harbottle M, Sapsford D, Cleall P. Life cycle assessment and cost-benefit analysis of nature-based solutions for contaminated land remediation: A mini-review. Heliyon 2023; 9:e20632. [PMID: 37842596 PMCID: PMC10569992 DOI: 10.1016/j.heliyon.2023.e20632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Nature-based solutions (NbS) have gained significant attention as a promising approach for remediating contaminated lands, offering multiple ecosystem services (ESs) benefits beyond pollution mitigation. However, the quantitative sustainability assessment of NbS remediation systems, particularly with regard to post-remediation impacts, remains limited. This mini-review aims to address the existing gaps in the assessment of NbS remediation systems by evaluating the limitations of life cycle assessment (LCA) and cost-benefit analysis (CBA) methodologies. A systematic literature search was conducted resulting in the review of 44 relevant studies published between 2006 and 2023. The review highlights an increasing trend in the coverage in the sustainability assessment literature of NbS remediation systems. Phytoextraction was identified as the main NbS mechanism employed in 65 % of the reviewed works, targeting contaminants such as heavy metals and hydrocarbons. However, the post-remediation aspects, including impacts on ESs and the end-of-life management of NbS biomass, were often neglected in the assessments with only a subset of studies partially exploring such aspects. The findings underscore the need for a comprehensive and integrated approach to assess the sustainability of NbS remediation systems, including the incorporation of economic factors, site-specific considerations, and post-remediation impacts. Addressing these gaps will enhance the understanding of NbS effectiveness and facilitate informed decision-making for contaminated land remediation.
Collapse
Affiliation(s)
- Khaled Alshehri
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
- Department of Civil Engineering, College of Engineering, University of Bisha, Bisha, 61922, P.O. Box 001, Kingdom of Saudi Arabia
| | - Zhenghui Gao
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | | | - Devin Sapsford
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Peter Cleall
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| |
Collapse
|
3
|
Li Y, Wei M, Yu B, Liu L, Xue Q. Thermal desorption optimization for the remediation of hydrocarbon-contaminated soils by a self-built sustainability evaluation tool. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129156. [PMID: 35596989 DOI: 10.1016/j.jhazmat.2022.129156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Current thermal desorption practices of hydrocarbon-contaminated soils focus on remediation efficiency and cost, with little systematic assessment of the reuse value of treated soils. This study evaluated various integrated indices of treatment cost and reuse of treated soils at three desorption temperatures. Various typical engineering and ecological characteristics closely related to soil reusability were selected to analyze the changes in various treated soils, including shear strength, Atterberg limits, particle size distribution, permeability, soil carbon, and soil biomass. A sustainability evaluation tool was developed for the greener disposal of hazardous soils considering both the treatment cost and reuse indices. Such an evaluation led to the conclusion that the contaminated soils treated at 350 °C generated the highest soil reusability with an excellent remediation efficiency. The sensitivity analysis confirmed that the tool had better stability in a common situation where the weight of the remediation cost was heavier than the soil reusability. Meanwhile, published data were input into the tool to validate its applicability under different scenarios. The results were consistent with the qualitative assessment of the literature. The tool can quantitatively select a more sustainable desorption method for the disposal and reuse of hazardous soils.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei province Key Laboratory of contaminated sludge and soil science and Engineering, Wuhan, 430071, China
| | - Mingli Wei
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; Jiangsu Institute of Zoneco Co., Ltd., Yixing 214200, China
| | - Bowei Yu
- Specialist Laboratory, Alliance Geotechnical Pty Ltd, 2147, Australia
| | - Lei Liu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei province Key Laboratory of contaminated sludge and soil science and Engineering, Wuhan, 430071, China
| | - Qiang Xue
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei province Key Laboratory of contaminated sludge and soil science and Engineering, Wuhan, 430071, China
| |
Collapse
|
4
|
Wang B, Li X, Ma CF, Zhu GF, Luan WF, Zhong JT, Tan MB, Fu J. Uncertainty analysis of ecosystem services and implications for environmental management - An experiment in the Heihe River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153481. [PMID: 35093363 DOI: 10.1016/j.scitotenv.2022.153481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Integrating the economic values of ecosystem services provided by different land uses into decision analysis is critical to achieving effective environmental management in endorheic basins. However, policymaking often ignores the uncertainty related to the variability of parameters in ecosystem service values. To this end, we identified sensitive parameters in the ecosystem service values under four land uses using the global sensitivity analysis method and quantified the potential monetary outcomes based on the Monte Carlo method. The results indicated that only a few sensitive parameters, such as water yield (Qi) and treatment costs per unit of nitrogen (Cost_N), were the primary sources of uncertainty. Therefore, we suggest that improving the precision of sensitive parameters is essential for reducing uncertainty in the total ecosystem service value. Additionally, the overall monetary outcomes for cropland exhibited negative values and had higher risk and lower benefits than those for forest from the standpoint of ecosystem services. In addition, the nonmarketed service of landscape aesthetic made the monetary outcomes of water bodies higher than those of cropland, yet the value of landscape aesthetic was highly uncertain. Therefore, efforts should be made to improve total monetary outcomes by decreasing the negative values in food provisioning of cropland and the uncertainty in landscape aesthetic for water bodies. The sensitivity analysis and uncertainty analysis provide important guidelines for quantifying and reducing the related uncertainty and provide policy information for environmental management based on a comprehensive consideration of the potential ecosystem service values for various land uses.
Collapse
Affiliation(s)
- Bei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Li
- National Tibetan Plateau Data Center, Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chun-Feng Ma
- Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gao-Feng Zhu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Wen-Fei Luan
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Jun-Tao Zhong
- College of Geography Sciences, Qinghai Normal University, Xining 810001, China
| | - Mei-Bao Tan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Fu
- Institute of Urban Study, Shanghai Normal University, Shanghai 201234, China
| |
Collapse
|