1
|
Zhao Y, Li T, Xie S, Zhang P, Mao H. Unlocking the access to nature-identical vanillin via isoeugenol ozonation: in situ ATR-IR monitoring and safety evaluation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:310-319. [PMID: 39623941 DOI: 10.1039/d4ay01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The transformation of renewable feedstocks into aromatic chemicals holds immense potential for advancing a green, low-carbon economy and fostering sustainable development. Herein, we present a novel approach for the conversion of isoeugenol, a renewable lignin derivative, into the valuable flavoring agent vanillin, utilizing ozone as an environmentally benign oxidant. The process optimization was significantly enhanced by the integration of in situ Attenuated Total Reflectance Infrared (ATR-IR) monitoring. The introduction of H2O not only accelerated the decay of carbonyl oxides (Criegee intermediates) but also mitigated safety hazards stemming from the vigorous decomposition and heat release of secondary ozonides. Compared to the conventional Thin Layer Chromatography (TLC) method, ATR-IR monitoring demonstrated superior sensitivity and precision in determining the reaction endpoint, leading to a remarkable vanillin yield of 96.86% upon complete conversion of isoeugenol. Additionally, a comparative assessment of the sustainability of our approach with existing methods was undertaken, and valuable recommendations for safety assessments were provided to ensure the inherent safety of chemical engineering reactions. The present study serves as a pioneering effort in facilitating the implementation of a scalable, economically feasible and environmentally sustainable strategy for biomass flavor production, while contributing to the broader adoption of in situ spectroscopic technology within the larger economy.
Collapse
Affiliation(s)
- Yun Zhao
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
- Shanghai Research Institute of Fragrance & Flavor Industry, 480 Nanning Road, Shanghai, 200232, China
| | - Tingfei Li
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Sisi Xie
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Pingyi Zhang
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
| | - Haifang Mao
- Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China.
- Shanghai Research Institute of Fragrance & Flavor Industry, 480 Nanning Road, Shanghai, 200232, China
| |
Collapse
|
2
|
Xiu FR, Zhan L, Qi Y, Wu T, Ju Y. Upcycling of waste disposable medical masks to high value-added gasoline fuel and surfactants products by sub/supercritical water degradation and partial oxidation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134950. [PMID: 38908183 DOI: 10.1016/j.jhazmat.2024.134950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/11/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The amount of waste disposable medical masks (DMMs) and the potential environmental risk increased significantly due to the huge demand of disposable medical surgical masks. In this study, two effective and environmentally friendly processes, supercritical water degradation (SCWD) and subcritical water partial oxidation (SubCWPO), were proposed for the upcycling of DMMs. The optimal conditions for the SCWD process (conversion ratio>98 %) were 410 ℃, 15 min, and 1:5 g/mL. The oil products obtained from the SCWD process were mainly small molecule hydrocarbons (C7-C12) with a content of 86 % and could be recycled as fuel feedstock for gasoline. Alkyl radicals in the SCWD reaction formed double bonds and ring structures through hydrogen capture reactions, β-scission, and dehydrogenation reactions, and aromatic hydrocarbons were formed by olefin cyclization and cycloalkane dehydrogenation. The introduction of an oxidant (H2O2) to the reaction system could significantly reduce the reaction temperature and shorten the reaction time. At 350 ℃, 15 min, 1:20 g/mL, V(H2O2): V (H2O) of 1:1, the conversion ratio of the SubCWPO process was 88 %, which was higher than that of the SCWD process at 400 ℃ (71.49 %). Oil products produced from the SubCWPO process were rich in alcohols and esters, which could be used as raw materials for nonionic surfactant of polyol and fatty acid ester. The abundant hydroxyl radical in the SubCWPO system trapped hydrogen atoms on PP and reacted with the resulting alkyl radical to form alkanols, which was oxidized to form acids. The esterification of acids and alkanols formed high level of esters. The SCWD and SubCWPO processes proposed in this study are believed to be promising strategies for DMMs degradation and the recovery of high value-added hydrocarbons.
Collapse
Affiliation(s)
- Fu-Rong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Longsheng Zhan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China.
| | - Tianbi Wu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| | - Yawei Ju
- College of Geology and Environment, Xi'an University of Science and Technology, Xi' an 710054, China
| |
Collapse
|
3
|
Phan Dang CT, Truong DH, Nguyen TLA, Taamalli S, El Bakali A, Louis F, Dao DQ. Oxidation of metazachlor herbicide by ozone in the gas and aqueous phases: mechanistic, kinetics, and ecotoxicity studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34453-w. [PMID: 39073716 DOI: 10.1007/s11356-024-34453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The atmospheric and aqueous ozonolysis of metazachlor (MTZ) is investigated using high-level quantum chemical and kinetic calculations (M06-2X/6-311 + + G(3df,3pd)//M06-2X/6-31 + G(d,p) level of theory). The ozone (O3)-initiated degradation pathways of MTZ under three different mechanisms, namely cycloaddition, oxygen-addition, and single electron transfer (SET), are explored in the temperature range of 283-333 K and 1 atm pressure. As a result, the cycloaddition reaction at the C16C18 double bond of the benzene ring of MTZ is found to be the most dominant channel in the atmosphere with the standard Gibbs free energy of reaction (ΔrG0g) of - 129.13 kJ mol-1 and the highest branching ratio of 95.18%. In the aqueous phase, the main reaction channel turns into the SET mechanism, which owns the lowest Gibbs free energy of activation (ΔG#aq) of 73.8 kJ mol-1 and contributes 87.8% to the ktotal. Over the temperature range of 283-333 K, the total rate constant (ktotal) significantly increases from 8.42 to 5.82 × 101 M-1 s-1 in the atmosphere and from 4.10 × 102 to 2.40 × 104 M-1 s-1 in the aqueous environment. Remarkably, the ecotoxicity assessment shows that MTZ may be harmful to fish and chronically harmful to daphnia. In contrast, its main ozonolysis products exhibit no acute or chronic toxicity or mutagenic effects.
Collapse
Affiliation(s)
- Cam-Tu Phan Dang
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Vietnam
| | - Dinh Hieu Truong
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Vietnam
| | - Sonia Taamalli
- UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, CNRS, 590000, Lille, France
| | - Abderrahman El Bakali
- UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, CNRS, 590000, Lille, France
| | - Florent Louis
- UMR 8522 - PC2A - PhysicoChimie des Processus de Combustion et de l'Atmosphère, Université de Lille, CNRS, 590000, Lille, France
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
- School of Engineering and Technology, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
4
|
Chen D, Yao B, Zhi X, Tian C, Chen M, Cao S, Feng X, Che H, Zhang K, Ao Y. Multi-heteroatom-doping promotes molecular oxygen activation on polymeric carbon nitride for simultaneous generation of H 2O 2 and degradation of oxcarbazepine. NANOSCALE 2023. [PMID: 37376986 DOI: 10.1039/d3nr01299a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Simultaneously realizing the efficient generation of H2O2 and degradation of pollutants is of great significance for environmental remediation. However, most polymeric semiconductors only show moderate performance in molecular oxygen (O2) activation due to the sluggish electron-hole pair dissociation and charge transfer dynamics. Herein, we develop a simple thermal shrinkage strategy to construct multi-heteroatom-doped polymeric carbon nitride (K, P, O-CNx). The resultant K, P, O-CNx not only improves the separation efficiency of charge carriers, but also improves the adsorption/activation capacity of O2. K, P, O-CNx significantly increases the production of H2O2 and the degradation activity of oxcarbazepine (OXC) under visible light. K, P, O-CN5 shows a high H2O2 production rate (1858 μM h-1 g-1) in water under visible light, far surpassing that of pure PCN. The apparent rate constant for OXC degradation by K, P, O-CN5 increases to 0.0491 min-1, which is 8.47 times that of PCN. Density functional theory (DFT) calculations show that the adsorption energy of O2 near phosphorus atoms in K, P, O-CNx is the highest. This work provides a new idea for the efficient degradation of pollutants and generation of H2O2 at the same time.
Collapse
Affiliation(s)
- Derui Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Bingling Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Xinyu Zhi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Chang Tian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Minghao Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Siyi Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Xinyu Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Huinan Che
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| | - Kan Zhang
- Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China.
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No. 1, Xikang Road, Nanjing, 210098, China.
| |
Collapse
|
5
|
Shen Y, Zhao H, Sheng X. Theoretical study of hydrogen bond interactions of methanesulfonic acid with eugenol/methyleugenol. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2022.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Xiao W, Sun S, Yan S, Wu W, Sun J. Theoretical study on the formation of Criegee intermediates from ozonolysis of pentenal: An example of trans-2-pentenal. CHEMOSPHERE 2022; 303:135142. [PMID: 35636604 DOI: 10.1016/j.chemosphere.2022.135142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigated the reaction mechanism and kinetics of ozone with trans-2-pentenal using density functional theory (DFT) and conventional transition state theory (CTST). At 298 K and 1 atm, the gas-phase reaction mechanisms and kinetic parameters were calculated at the level of CCSD(T)/6-311+G(d,p)//M06-2X/6-311+G(d,p). Both CC and CO bond cycloaddition as well as hydrogen abstraction were found. The calculations indicated that the main reaction path is 1,3-dipole cycloaddition reactions of ozone with CC bond with the relatively lower syn-energy-barrier of 3.35 kcal mol-1 to form primary ozonide which decomposed to produce a carbonyl oxide called a Criegee intermediate (CI) and an aldehyde. The subsequent reactions of CIs were analysed in detail. It is found that the reaction pathways of the novelty CIs containing an aldehyde group are extremely similar with general CIs when they react with NO, NO2, SO2, H2O, CH2O and O2. The condensed Fukui function were calculated to identify the active site of the chosen molecules. At 298 K and 1 atm, the reaction rate coefficient was 9.13 × 10-18 cm3 molecule-1 s-1 with atmospheric lifetime of 1.3 days. The calculated rate constant is in general agreement with the available experimental data. The branching ratios indicated that syn-addition pathways are prior to anti-addition. The atmospheric ratios for CIs formation and the bimolecular reaction rate constants for the Criegee intermediates with the variety of partners were calculated. Our theoretical results are of importance in atmospheric chemistry of unsaturated aldehyde oxidation by ozone.
Collapse
Affiliation(s)
- Weikang Xiao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| | - Simei Sun
- Huangshi Key Laboratory of Photoelectric Technology and Materials, College of Physics and Electronic Science, Hubei Normal University, Huangshi, 435002, PR China
| | - Suding Yan
- College of Urban and Environmental Sciences, Hubei Normal University, Huangshi, 435002, PR China
| | - Wenzhong Wu
- College of Foreign Languages, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| | - Jingyu Sun
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China.
| |
Collapse
|
7
|
Li X, Zhang C, Zhao X, Li Y, He Z, Liu P, Liu C, Liu J, Zhang Y, Mu Y. Abiotic degradation of field wheat straw as a notable source of atmospheric carbonyls in the North China Plain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151366. [PMID: 34740656 DOI: 10.1016/j.scitotenv.2021.151366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Carbonyl compounds (carbonyls) play a crucial role in atmospheric chemistry, but their atmospheric sources are not fully identified. Here we show unexpectedly high carbonyl emissions from extensive field returning wheat straw over the North China Plain (NCP). The emission rates of carbonyls exhibit distinct diurnal variations with the noontime peak value of total carbonyls greater than 135 μg∙kg-1 (dry straw weight) ∙h-1. The carbonyl emission is mainly attributed to biomass abiotic degradation processes that are affected by air temperature and sunlight intensity. Given that the photolysis of carbonyls is the major primary source of ROx radicals in the troposphere, carbonyl emissions would lead to increasing atmospheric oxidants. The mean daytime O3 concentration over the NCP increases by 12.3% when coupling carbonyl emissions from wheat straw with the current emission inventory through the model simulation. It might be one of the important reasons for the occurrence of the most serious O3 pollution in June when winter wheat is intensively harvested in the region. Further studies are warranted to explore the influence of field returning wheat straw on regional air quality.
Collapse
Affiliation(s)
- Xuran Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenglong Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaoxi Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing 100089, China; Key Laboratory of Atmospheric Chemistry, China Meteorological Administration, Beijing 100081, China
| | - Yuanzhao Li
- Wuxi CAS Photonics Co., Ltd., Wuxi 214000, China
| | - Zhouming He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengtang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junfeng Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yuanyuan Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
8
|
Liu C, Chen D, Chen X. Atmospheric Reactivity of Methoxyphenols: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2897-2916. [PMID: 35188384 DOI: 10.1021/acs.est.1c06535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methoxyphenols emitted from lignin pyrolysis are widely used as potential tracers for biomass burning, especially for wood burning. In the past ten years, their atmospheric reactivity has attracted increasing attention from the academic community. Thus, this work provides an extensive review of the atmospheric reactivity of methoxyphenols, including their gas-phase, particle-phase, and aqueous-phase reactions, as well as secondary organic aerosol (SOA) formation. Emphasis was placed on kinetics, mechanisms, and SOA formation. The reactions of methoxyphenols with OH and NO3 radicals were the predominant degradation pathways, which also had significant SOA formation potentials. The reaction mechanism of methoxyphenols with O3 is the cycloaddition of O3 to the benzene ring or unsaturated C═C bond, while H-abstraction and radical adduct formation are the main degradation channels of methoxyphenols by OH and NO3 radicals. Based on the published studies, knowledge gaps were pointed out. Future studies including experimental simulations and theoretical calculations of other representative kinds of methoxyphenols should be systematically carried out under complex pollution conditions. In addition, the ecotoxicity of their degradation products and their contribution to SOA formation from the atmospheric aging of biomass-burning plumes should be seriously assessed.
Collapse
Affiliation(s)
- Changgeng Liu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| | - Xiao'e Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P.R. China
| |
Collapse
|
9
|
Sun Y, Liu L, Li M, Chen X, Xu F. Theoretical investigation on the mechanisms and kinetics of OH/NO 3-initiated atmospheric oxidation of vanillin and vanillic acid. CHEMOSPHERE 2022; 288:132544. [PMID: 34648789 DOI: 10.1016/j.chemosphere.2021.132544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Vanillin and vanillic acid are two kinds of lignin pyrolysis products that are generated by biomass combustion. The gas-phase oxidation mechanisms of vanillin and vanillic acid initiated by OH/NO3 radicals were investigated by using density functional theory (DFT) at M06-2X/6-311+G(3df,2p)//M06-2X/6-311+G(d,p) level. The initial reactions of vanillin and vanillic acid with OH/NO3 radicals can be divided into two patterns: OH/NO3 addition and H-atom abstraction. For vanillin reacted with OH radical, the OH addition mainly occurs at C2-position to produce highly chemically activated intermediate (IM2). The oxidation products 3,4-dihydroxy benzaldehyde, malealdehyde, methyl hydrogen oxalate, methylenemalonaldehyde, carbonyl and carbonyl compounds are formed by the subsequent reactions of IM2. H-atom abstracting from aldehyde group occurs more easily than from the other positions. In addition, vanillin reacting with NO3 radicals principally proceeds via NO3-addition at C1 sites and H-atom abstracting from OH group (C1) to generate HNO3. The primary reaction mechanisms of vanillic acid with OH/NO3 radicals were similar to vanillin. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory was performed to calculate the rate constants of the significant elementary reactions. The total rate constants for OH-initiated oxidation of vanillin and vanillic acid are 5.72 × 10-12 and 5.40 × 10-12 cm3 molecule-1 s-1 at 298 K and 1 atm. The atmospheric lifetimes were predicted to be 48.56 h and 51.44 h, respectively. As a supplement, the kinetic calculations of NO3 radicals with two reactants were also discussed. This work investigates the atmospheric oxidation processes of vanillin and vanillic acid, and hopes to provide useful information for further experimental research.
Collapse
Affiliation(s)
- Yanhui Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Lin Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ming Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoxiao Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
10
|
Jin X, Zhang S, Yang S, Zong Y, Xu L, Jin P, Yang C, Hu S, Li Y, Shi X, Wang XC. Behaviour of ozone in the hybrid ozonation-coagulation (HOC) process for ibuprofen removal: Reaction selectivity and effects on coagulant hydrolysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148685. [PMID: 34198084 DOI: 10.1016/j.scitotenv.2021.148685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous ozonation and coagulation can be realized in one unit in the developed hybrid ozonation-coagulation (HOC) process. To reveal the reaction sequence within the HOC process, the ibuprofen (IBP) removal efficiency of the ozonation only, HOC and HOC-PO43- (inhibition of the reactions between ozone and metal coagulant) processes at pH 5 and different ozone dosages were investigated. The removal efficiency is almost the same for the three processes at a low ozone dosage (4.8 mg/L), and higher removal performance can be achieved by the HOC process with increasing ozone dosage. It can be implied that ozone preferentially reacts with OH- to generate OH which react with IBP in the HOC process, and subsequently reacts with the surface hydroxyl groups of hydrolysed Al species to enhance OH generation. Moreover, based on the kinetics, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR) analyses, the synergistic reactions between ozone and the metal coagulants (SOC) started to take effect from ozone dosage of 9.6 mg/L, which further verified that ozone will be involved in the IBP ozonation prior to the SOC reactions. The subsequent SOC reactions also resulted in the increased generation of polymeric Al species and more abundant intermediates in the HOC process.
Collapse
Affiliation(s)
- Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Shaohua Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yukai Zong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Lu Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China.
| | - Chao Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Shiyi Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yao Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|