1
|
Liu J, Sun Y, Zhang L, Li X, He Z, Zhou C, Han J. Screening of antibiotics to obtain axenic cell cultures of a marine microalga Chrysotila roscoffensis. Front Bioeng Biotechnol 2023; 11:1218031. [PMID: 37304139 PMCID: PMC10248157 DOI: 10.3389/fbioe.2023.1218031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Due to high growth rate, outstanding abiotic stress tolerance, and rich value-added substances, Chrysotila roscoffensis, belonging to the phylum of Haptophyta, can be considered as a versatile resource for industrial exploitation of bioactive compounds. However, the application potential of C. roscoffensis has drawn attention until just recently, and the understanding related to the biological properties of this species is still scarce. For example, the sensitivities of C. roscoffensis to antibiotics, which is essential for the verification of heterotrophic capacity and the establishment of efficient genetic manipulation system is still unavailable. Aiming to provide fundamental information for future exploitation, the sensitivities of C. roscoffensis to nine types of antibiotics were tested in this study. The results demonstrated that C. roscoffensis exhibited relatively high resistances to ampicillin, kanamycin, streptomycin, gentamicin, and geneticin, while was sensitive to bleomycin, hygromycin B, paromomycin, and chloramphenicol. Using the former five types of antibiotics, a bacteria removal strategy was established tentatively. Finally, the axenicity of treated C. roscoffensis was confirmed based on a multi-strategy method including solid plate, 16S rDNA amplification, and nuclear acid staining. This report can provide valuable information for the development of optimal selection markers, which are meaningful for more extensive transgenic studies in C. roscoffensis. Moreover, our study also paves the way for the establishment of heterotrophic/mixotrophic cultivation modes of C. roscoffensis.
Collapse
Affiliation(s)
- Jiaojiao Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhichao He
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Oceanography, Ningbo, China
| |
Collapse
|
2
|
Ismail KA, Al Shehhi MR. Upwelling and nutrient dynamics in the Arabian Gulf and sea of Oman. PLoS One 2022; 17:e0276260. [PMID: 36269773 PMCID: PMC9586346 DOI: 10.1371/journal.pone.0276260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
This study demonstrates the vertical and horizontal distribution of nutrients and the seasonal response of nutrients to upwelling in the Arabian Gulf and the Sea of Oman. Thus, monthly data on nitrate, phosphate, and silicate are obtained from the World Ocean Atlas 2018 (WOA), as well as estimates of coastal and curl driven upwelling in both regions. The results of the study indicate that the Sea of Oman's surface and deep waters contained higher concentrations of nutrients than the Arabian Gulf by 80%. In addition, both regions have exhibited a general increase in the vertical distribution of nutrients as the depth increases. Among the aforementioned nutrients, nitrate is found to be a more limiting nutrient for phytoplankton growth than phosphate as the nitrate-to-phosphate ratios (N:P) in surface waters are lower (≤ 4.6:1) than the Redfield ratio (16:1). As for the upwelling, curl-driven upwelling accounts for more than half of the total upwelling in both regions, and both play an important role in nutrient transport. Thus, nutrients are upwelled from the subsurface to the mixed layer at a rate of 50% in the Oman Sea from 140 m to 20 m during the summer and to 40 m during the winter. Similarly, the Arabian Gulf shows 50% transport for nitrates, but 32% for phosphates, from 20 m to 5-10 m. However, due to the abundance of diatoms at the surface of the Arabian Gulf, the surface silicate content is 30% higher than that of the deeper waters.
Collapse
Affiliation(s)
- Kaltham Abbas Ismail
- Civil Infrastructure and Environmental Engineering, Khalifa University, Abu Dhabi, UAE
| | - Maryam R. Al Shehhi
- Civil Infrastructure and Environmental Engineering, Khalifa University, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
3
|
Xu S, Liu Y, Zhang J. Transcriptomic mechanisms for the promotion of cyanobacterial growth against eukaryotic microalgae by a ternary antibiotic mixture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58881-58891. [PMID: 35377122 DOI: 10.1007/s11356-022-20041-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the responses of a mixed culture of two cyanobacterial species (Microcystis aeruginosa and Synechocystis sp.) and two eukaryotic microalgal species (Raphidocelis subcapitata and Tetradesmus obliquus) to a mixture of three frequently detected antibiotics (tetracycline, ciprofloxacin and sulfamethoxazole) at environmentally relevant exposure doses of 60-300 ng/L. Mixed antibiotics selectively stimulated (p < 0.05) the growth and photosynthetic activity as well as generated transcriptomic responses in cyanobacteria without disrupting co-existing eukaryotic microalgae. Mixed antibiotics stimulated the growth of M. aeruginosa through the regulation of genes related to ribosome, photosynthesis, redox homeostasis, quorum sensing and nutrient metabolism. The proportion of M. aeruginosa among the four phytoplankton species in the mixed-culture system was increased from 33% to 38-44% under antibiotic exposure, which promoted the dominance of M. aeruginosa. Up-regulation of carbon catabolism-related genes contributed to the increased growth of Synechocystis sp. under antibiotic exposure. Since the antibiotic-stimulated growth rate of Synechocystis sp. was still lower than that of M. aeruginosa, the proportion of Synechocystis sp. in the mixed-culture system remained stable. Synechocystis sp. was less adaptive to antibiotic exposure than M. aeruginosa, due to a lower number of up-regulated ribosomal genes and photosynthesis-related genes. Antibiotic exposure reduced the proportions of two eukaryotic microalgal species in the mixed-culture system through a selective promotion of cyanobacterial competitiveness against eukaryotic microalgae, which may facilitate the formation of cyanobacteria bloom.
Collapse
Affiliation(s)
- Sijia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| |
Collapse
|
4
|
Lai YS, Eustance E, Shesh T, Frias Z, Rittmann BE. Achieving superior carbon transfer efficiency and pH control using membrane carbonation with a wide range of CO 2 contents for the coccolithophore Emiliania huxleyi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153592. [PMID: 35122858 DOI: 10.1016/j.scitotenv.2022.153592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The economic viability of microalgal-derived products relies on rapid CO2 transfer in a cost-effective manner. Many industrial gas streams contain concentrated CO2 that, if converted to useful products, would lower greenhouse gas emissions and valorize the wasted CO2. Membrane carbonation (MC) uses non-porous hollow-fiber gas-transfer membranes to deliver CO2 without bubble formation, which makes it possible to achieve a high carbon-transfer efficiency (CTE). However, inert gasses in the industrial streams (e.g., N2, O2, and H2O) can significantly lower the CO2-delivery rate. The means to overcome the buildup of inert gases in the membrane lumen is to manage the distal end of the membranes to sweep out inert gases while not wasting significant CO2. A MC-venting strategy was evaluated for CO2 inputs from 5% to 100%. Abiotic tests using a restricted exit flow could achieve >95% CTEabiotic for industrial CO2 streams. When integrated with semi-continuous cultivation of a marine coccolithophore, Emiliania huxleyi, CO2 delivery and venting were on-demand based on a pH set points and pH-actuated feed and venting valves. MC using the venting strategy achieved 100% CTEbiotic when delivering 100% and 50% CO2, which was better than 50% CTEbiotic obtained from pH-controlled sparging of 100% CO2-sparging. E. huxleyi consistently fixed ~80% of the delivered CO2 into biomass, and the remaining ~20% to calcite coccoliths. The compact size of MC modules, stable pH control, and no shear forces from bubble agitation during the CO2 delivery made MC an ideal match for cultivation of coccolithophores, which are sensitive to shear forces and pH fluctuations.
Collapse
Affiliation(s)
- YenJung Sean Lai
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA.
| | - Everett Eustance
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| | - Tarun Shesh
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| | - Zoe Frias
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, USA
| |
Collapse
|
5
|
Ávila-Román J, García-Gil S, Rodríguez-Luna A, Motilva V, Talero E. Anti-Inflammatory and Anticancer Effects of Microalgal Carotenoids. Mar Drugs 2021; 19:531. [PMID: 34677429 PMCID: PMC8539290 DOI: 10.3390/md19100531] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation is a key component of the immune system's response to pathogens, toxic agents, or tissue injury, involving the stimulation of defense mechanisms aimed to removing pathogenic factors and restoring tissue homeostasis. However, uncontrolled acute inflammatory response may lead to chronic inflammation, which is involved in the development of many diseases, including cancer. Nowadays, the need to find new potential therapeutic compounds has raised the worldwide scientific interest to study the marine environment. Specifically, microalgae are considered rich sources of bioactive molecules, such as carotenoids, which are natural isoprenoid pigments with important beneficial effects for health due to their biological activities. Carotenoids are essential nutrients for mammals, but they are unable to synthesize them; instead, a dietary intake of these compounds is required. Carotenoids are classified as carotenes (hydrocarbon carotenoids), such as α- and β-carotene, and xanthophylls (oxygenate derivatives) including zeaxanthin, astaxanthin, fucoxanthin, lutein, α- and β-cryptoxanthin, and canthaxanthin. This review summarizes the present up-to-date knowledge of the anti-inflammatory and anticancer activities of microalgal carotenoids both in vitro and in vivo, as well as the latest status of human studies for their potential use in prevention and treatment of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Sara García-Gil
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Azahara Rodríguez-Luna
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Virginia Motilva
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| | - Elena Talero
- Department of Pharmacology, Universidad de Sevilla, 41012 Seville, Spain; (S.G.-G.); (A.R.-L.); (V.M.)
| |
Collapse
|