1
|
Kou X, Liu H, Chen H, Xu Z, Yu X, Cao X, Liu D, Wen L, Zhuo Y, Wang L. Multifunctionality and maintenance mechanism of wetland ecosystems in the littoral zone of the northern semi-arid region lake driven by environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161956. [PMID: 36737024 DOI: 10.1016/j.scitotenv.2023.161956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The relationship between biodiversity and ecosystem multifunctionality (BEMF) has become an ecological research hot spot in recent years. Changes in biodiversity are non-randomly distributed in space and time in natural ecosystems, and the BEMF relationship is affected by a combination of biotic and abiotic factors. These complex, uncertain relationships are affected by research scale and quantification and measurement indicators. This paper took the Daihai littoral zone wetlands in Inner Mongolia as the research object to reveal the dynamic succession of wetland vegetation and ecosystem function change characteristics and processes during the shrinkage of the lake. The main findings were as follows: the combined effect of aboveground (species and functions) and belowground (bacteria and fungi) diversity was greater than the effect of single components on ecosystem multifunctionality (EMF) (R2 = 80.00 %). Soil salinity (EC) had a direct negative effect on EMF (λ = -0.22), and soil moisture (SM) had a direct positive effect on EMF (λ = 0.19). The results of the hierarchical partitioning analysis showed that plant species richness (Margalef index) was the ideal indicator to explain the EMF and C, N, and P cycling functions in littoral zone wetlands with explanations of 12.25 %, 7.31 %, 7.83 %, and 5.33 %, respectively. The EMF and C and P cycles were mainly affected by bacterial diversity, and the N cycle was mainly affected by fungal abundance in belowground biodiversity. Margalef index and sand content affected EMF through cascading effects of multiple nutrients (FDis, CWMRV, CWMLCC, and bacterial and fungal abundance and diversity) in littoral zone wetlands. This paper provides a reference for exploring the multifunctionality maintenance mechanisms of natural littoral zone wetland ecosystems in the context of global change, and it also provides important theoretical support and basic data for the implementation of ecological restoration in Daihai lake.
Collapse
Affiliation(s)
- Xin Kou
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huamin Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Han Chen
- School of Business Administration and Humanities, Mongolian University of Science & Technology, Ulaanbaatar 46/520, Mongolia
| | - Zhichao Xu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaowen Yu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaoai Cao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Dongwei Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lu Wen
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yi Zhuo
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Hohhot 010021, China.
| |
Collapse
|
2
|
Evaluation of Drought Propagation Characteristics and Influencing Factors in an Arid Region of Northeast Asia (ARNA). REMOTE SENSING 2022. [DOI: 10.3390/rs14143307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The characteristics of the drought propagation from meteorological drought (MD) to agricultural drought (AD) differ in various climatic and underlying surface conditions. However, how these factors affect the process of drought propagation is still unclear. In this study, drought propagation and influencing factors were investigated in an arid region of Northeast Asia (ARNA) during 1982–2014. Based on run theory, the drought characteristics were detected using the standardized precipitation index (SPI) and standardized soil moisture index (SMI), respectively. The propagation time from MD to AD was investigated, and the influence factors were identified. Results demonstrated that five clusters (C1–C5) based on land cover distribution were further classified by the K-means cluster algorithm to discuss the spatial and seasonal propagation variation. MD and AD in ARNA became more severe during the study period in all five clusters. The propagation times from MD to AD in all five clusters were shorter (1–3 months) in summer and autumn and longer (5–12 months) in spring and winter. This result suggested that the impact of vegetation on the seasonal drought propagation time was more obvious than that of the spatial drought propagation time. Precipitation and vegetation were the major impactors of AD in spring, summer and autumn (p < 0.05). The impact of precipitation on AD was more noticeable in summer, while vegetation mainly influenced AD in spring and autumn. The research also found that drought propagation time had a negative relationship (p < 0.05) with precipitation, evapotranspiration, soil moisture and NDVI in this region, which indicated that a rapid hydrological cycle and vegetation can shorten the propagation time from MD to AD. This study can help researchers to understand the drought propagation process and the driving factors to enhance the efficiency of drought forecasting.
Collapse
|
3
|
Monitoring the Water Mass Balance Variability of Small Shallow Lakes by an ERA5-Land Reanalysis and Water Level Measurement-Based Model. An Application to the Trasimeno Lake, Italy. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Climate change has a strong impact on inland water bodies such as lakes. This means that the increase in lake temperature recorded in recent decades-in Europe as well-can change the evaporation regime of the lakes. This, together with the variation of the water cycle, in particular precipitation, implies that the water mass balance of lakes may vary due to climate change. Water mass balance modeling is therefore of paramount importance to monitor lakes in the context of global warming. Although many studies have focused on such a modeling, there is no shared approach that can be used for any lake across the globe, irrespective of the size. This becomes even more problematic for shallow and small lakes, for which few studies exist. For this reason, in this paper the use of reanalysis data, in particular ERA5-Land provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), is proposed for the mass balance modeling. In fact, ERA5-Land has a global coverage and it is the only data source comprising a specific model for lakes, the Fresh-water Lake model (FLake). The chosen case study is the Trasimeno lake, a small and shallow lake located in Central Italy. The use of the reanalysis was preceded by data validation by considering both ground-based and satellite observations. The results show that there is a good agreement between the observed monthly variation of the lake level, ΔH, and the corresponding values of the water storage, δ, computed by means of the ERA5-Land data (Pearson coefficient larger than 70%). Discrepancies between observations and the ERA5-Land data happen in periods characterized in Europe by an extreme climate anomaly. This promising result encourages the use of ERA5-Land for other lakes.
Collapse
|