1
|
Wang Z, Gao J, Lan X, Guo Z. Joint utilization and harmless elimination of aluminum dross and refined magnesium slag to simultaneously recover metallic aluminum and fusing agent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121680. [PMID: 38971063 DOI: 10.1016/j.jenvman.2024.121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/15/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Refined magnesium slag and aluminum dross are two typical hazardous solid wastes that contain significant amounts of leachable fusing agent and aluminum droplets encapsulated by dense oxidized films, respectively. This study creatively proposes a safe and green method for the joint utilization of these two wastes. The interfacial reaction behavior revealed that the dense oxidized films of the aluminum droplets were significantly broken by the erosive action of the fusing agent, providing the necessary conditions for the movement of aluminum droplets. Consequently, the aluminum droplets successfully broke free from the oxidized films and separated together with the fusing agent from the dross under the force of supergravity. The recovery ratios of metallic aluminum and fusing agent reached 98.95 % and 98.13 %, while the aluminum and fusing agent contents in the tailings were reduced to 0.82 wt% and 3.71 wt%. The study also discusses the leaching characteristic of the tailings and the scalability for industrial applications of this method in detail. This study not only achieves valuable resource recovery but also reduces the leaching risk and alleviates the land occupation and ecosystem pressure caused by industrial wastes. The tailings can be harmlessly utilized in related fields through subsequent scientific treatment.
Collapse
Affiliation(s)
- Zengwu Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Jintao Gao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | - Xi Lan
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Zhancheng Guo
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, PR China.
| |
Collapse
|
2
|
Khan AL. Silicon: A valuable soil element for improving plant growth and CO 2 sequestration. J Adv Res 2024:S2090-1232(24)00217-0. [PMID: 38806098 DOI: 10.1016/j.jare.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Silicon (Si), the second most abundant and quasi-essential soil element, is locked as a recalcitrant silicate mineral in the Earth's crust. The physical abundance of silicates can play an essential role in increasing plant productivity. Plants store Si as biogenic silica (phytoliths), which is mobilized through a chemical weathering process in the soil. AIM OF REVIEW Although Si is a critical element for plant growth, there is still a considerable need to understand its dissolution, uptake, and translocation in agroecosystems. Here, we show recent progress in understanding the interactome of Si, CO2, the microbiome, and soil chemistry, which can sustainably govern silicate dissolution and cycling in agriculture. KEY SCIENTIFIC CONCEPTS OF THIS REVIEW Si cycling is directly related to carbon cycling, and the resulting climate stability can be enhanced by negative feedback between atmospheric CO2 and the silicate uptake process. Improved Si mobilization in the rhizosphere by the presence of reactive elements (for example, Ca, Na, Al, Zn, and Fe) and Si uptake through genetic transporters in plants are crucial to achieving the dual objectives of (i) enhancing crop productivity and (ii) abiotic stress tolerance. Furthermore, the microbiome is a symbiotic partner of plants. Bacterial and fungal microbiomes can solubilize silicate minerals through intriguingly complex bioweathering mechanisms by producing beneficial metabolites and enzymes. However, the interaction of Si with CO2 and the microbiome's function in mobilization have been understudied. This review shows that enhancing our understanding of Si, CO2, the microbiome, and soil chemistry can help in sustainable crop production during climatic stress events.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston TX, USA.
| |
Collapse
|
3
|
Huo Q, Li R, Chen M, Zhou R, Li B, Chen C, Liu X, Xiao Z, Qin G, Huang J, Long T. Mechanism for leaching of fluoride ions from carbon dross generated in high-temperature and low-lithium aluminum electrolytic systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133838. [PMID: 38430589 DOI: 10.1016/j.jhazmat.2024.133838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Carbon dross, a hazardous solid waste generated during aluminum electrolysis, contains large amounts of soluble fluoride ions for the main components of the electrolyte (such as Na3AlF6 and NaF). Response surface methodology (RSM) was used to investigate the mechanism for fluoride ion leaching from carbon dross via water leaching, acid leaching and alkali leaching, and the kinetic and thermodynamic principles of the leaching process were revealed. The RSM predicted the optimum conditions of water leaching, alkali leaching and acid leaching, and the conditions are as follows: temperature, 50 °C; shaking speed, 213 r·min-1; particle size, 0.075 mm; shaking speed, 194 r·min-1; liquid-solid ratio, 12.6 mg·L-1; sodium hydroxide concentration, 1.53 mol·L-1; liquid-solid ratio, 25.0 mg·L-1; sulfuric acid concentration, 2.00 mol·L-1; and temperature, 60 °C,and actual results which were almost consistent with the predicted results were gained. The fluoride ions in the alkaline and acid leaching solutions were mainly the dissociation products of fluorides such as Na3AlF6, Na5Al3F14 and CaF2, as indicated by thermodynamics calculations. In particular, the fluoride compounds dissolved in alkali solution were Na3AlF6, Na5Al3F14, AlF3, ZrF4, K3AlF6, while the acid solution could dissolve only Na3AlF6 and CaF2. The leaching kinetics experiments showed that the leaching rate fit the unreacted shrinking core model [1-2/3α-(1-α)2/3 =kt] and that the leaching process was controlled by internal diffusion. This study provides theoretical guidance for the removal of soluble fluoride ions from carbon dross and will also assist in the separation of electrolytes from carbon dross. ENVIRONMENTAL IMPLICATION: Carbon dross, a hazardous waste generated during the aluminum electrolysis production process, contains a large amount of soluble fluoride. Improper storage will lead the fluoride ions pollution in soil, surface water or groundwater under the direct contact between carbon dross and rainfall, snow or surface runoff. The influence of wind will cause carbon dross dust to pollute further areas. With the human body long-term contact with fluoride ion contaminated soil or water, human health will be seriously harmed.
Collapse
Affiliation(s)
- Qiang Huo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education - Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilisation in Lijiang River Basin, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, Guangxi 541006, China; College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Ruoyang Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, Guangxi 541006, China; College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Mingyan Chen
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, Guangxi 541006, China; College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Runyou Zhou
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Bin Li
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Chunqiang Chen
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Xi Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education - Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilisation in Lijiang River Basin, Guilin, Guangxi 541006, China; School of Economics and Management, Guangxi Normal University, Guilin 541006, China
| | - Zeqi Xiao
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Guozhao Qin
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Jianghui Huang
- College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China
| | - Tengfa Long
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education - Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilisation in Lijiang River Basin, Guilin, Guangxi 541006, China; Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, Guangxi 541006, China; College of Environment and Resources, Guangxi Normal University, Guilin, Guangxi 541006, China.
| |
Collapse
|
4
|
Wang C, Li S, Guo Y, He Y, Liu J, Liu H. Comprehensive treatments of aluminum dross in China: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118575. [PMID: 37451029 DOI: 10.1016/j.jenvman.2023.118575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Aluminum is an important lightweight and high-value metal that is widely used in the transportation, construction, and military industries. China is the largest producer of Al in the world, and vast quantities of Al dross (ash) are generated and stored every year. Aluminum dross contains fluoride and heavy metals, and easily reacts with water and acid to produce stimulating, toxic, and explosive gases. Owing to a lack of developed technologies, most of this dross cannot be safely treated, resulting in a waste of resources and serious environmental and ecological risks. This review briefly describes the distribution and proportions of bauxite deposits in China, the Al extraction process, and the hazardous solid waste that is generated. It also discusses the comprehensive treatments for Al dross, including the hydrometallurgy and pyrometallurgy recovery processes, and reuse of Al, Al2O3, SiO2, and chloride salts as a summarized comparison of their advantages and disadvantages. In particular, this review focuses on the efforts to analyze the relationship between existing processes and the attempts to establish a comprehensive technology to treat Al dross. Additionally, areas for future research are suggested, which may provide new ideas for the closed-loop treatment of Al dross.
Collapse
Affiliation(s)
- Chuan Wang
- School of Physics and Materials, Nanchang University, Nanchang, 330031, China
| | - Sen Li
- School of Physics and Materials, Nanchang University, Nanchang, 330031, China
| | - Yongchun Guo
- School of Physics and Materials, Nanchang University, Nanchang, 330031, China
| | - YongYi He
- School of Physics and Materials, Nanchang University, Nanchang, 330031, China
| | - Jun Liu
- Delta Aluminium Industry Co., Ltd, China
| | - Hu Liu
- School of Physics and Materials, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
5
|
Xie H, Guo Z, Xu R, Zhang Y. Particle sorting to improve the removal of fluoride and aluminum nitride from secondary aluminum dross by roasting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54536-54546. [PMID: 36872407 DOI: 10.1007/s11356-023-26201-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
It is important to remove active substances from secondary aluminum dross (SAD) to meet the reuse of SAD. In this work, the removal of active substances from different particle sizes of SAD was studied using roasting improvement with particle sorting. The results showed that roasting after particle sorting pretreatment can effectively remove fluoride and aluminum nitride (AlN) from SAD, while getting the high-grade alumina (Al2O3) crude materials. The active substances of SAD mainly contribute to AlN, aluminum carbide (Al4C3), and soluble fluoride ions. AlN and Al3C4 mainly exist in particles of 0.05-0.1 mm, while Al and fluoride are mainly in particles of 0.1-0.2 mm. The SAD of particle size ranging 0.1-0.2 mm has high activity and leaching toxicity; the gas emission was reached 50.9 mL/g (limit value of 4 mL/g), and the fluoride ion concentration in the literature was 137.62 mg/L (limit value of 100 mg/L) during the identification for reactivity and leaching toxicity according to GB5085.5-2007 and GB5085.3-2007, respectively. Roasting at 1000 °C for 90 min, the active substances of SAD were converted to Al2O3, N2, and CO2; meanwhile, soluble fluoride converted to stable CaF2. The final gas release was reduced to 2.01 mL/g while soluble fluoride from SAD residues was reduced to 6.16 mg/L, respectively. The Al2O3 content of SAD residues was determined at 91.8% and has been classified as category I solid waste. The results suggested that the roasting improvement with particle sorting of SAD can meet the reuse of valuable materials at full scale.
Collapse
Affiliation(s)
- Huimin Xie
- School of Metallurgy and Environment, Central South University, No. 932 South Lushan Road, Changsha, 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, No. 932 South Lushan Road, Changsha, 410083, China.
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, No. 932 South Lushan Road, Changsha, 410083, China
| | - Yanglin Zhang
- School of Metallurgy and Environment, Central South University, No. 932 South Lushan Road, Changsha, 410083, China
| |
Collapse
|
6
|
Zhu B, Wang L, Li G, Jin Q. Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment. Processes (Basel) 2023. [DOI: 10.3390/pr11041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
This work first transformed hazardous aluminum waste into low-cost MgAl−layered double hydroxide@ANA zeolite (LDHs@ANA) composite for dye wastewater adsorption, which was meaningful for waste recovery and pollution control. Based on this strategy, the Al(OH)3 extracted from secondary aluminum dross (a hazardous waste in the aluminum industry) was used as an aluminum source to synthesize LDHs@ANA composite, which had more excellent adsorption capacity to methylene blue than MgAl−LDHs and ANA alone. The composite consisted of spherical ANA particles uniformly covered with LDH nanosheets, which effectively avoided a large amount of aggregation between nanosheets and increased specific surface areas and pore volumes. The kinetic results indicated that the adsorption process conformed to the pseudo-second-order kinetic model, and the adsorption site was the main factor affecting the adsorption process. The equilibrium studies showed the adsorption process was exothermic, and the Langmuir model best fitted for the adsorption process, with a maximum adsorption capacity reaching 65.27 mg/g. Meanwhile, the effects of pH, adsorbent concentration, initial methylene blue concentration, and adsorption time on the LDHs@ANA were analyzed. Overall, this work provides a fresh concept for the preparation of low-cost adsorbents from aluminum waste.
Collapse
|
7
|
Jiménez A, Trujillano R, Rives V, Vicente MÁ. Mixed–metal–oxide photocatalysts generated by high–temperature calcination of CaAlFe, hydrocalumite–LDHs prepared from an aluminum salt–cake. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Preparation of Ca2Al1–mFem(OH)6Cl·2H2O-Doped Hydrocalumites and Application of Their Derived Mixed Oxides in the Photodegradation of Ibuprofen. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6040064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aluminum from saline slags generated during the recycling of this metal, extracted under reflux conditions with aqueous NaOH, was used in the synthesis of hydrocalumite-type solids with the formula Ca2Al1–mFem(OH)6Cl·2H2O. The characterization of the obtained solids was carried out by powder X-ray diffraction, infrared spectroscopy, thermal analysis, element chemical analysis, N2 adsorption-desorption at −196 °C and electron microscopy. The results showed the formation of Layered Double Hydroxide-type compounds whose characteristics varied as the amount of incorporated Fe3+ increased. These solids were calcined at 400 °C and evaluated for the catalytic photodegradation of ibuprofen, showing promising results in the elimination of this drug by advanced oxidation processes. The CaAl photocatalyst (without Fe) showed the best performance under UV light for the photodegradation of ibuprofen.
Collapse
|
9
|
Lv H, Xie M, Wu Z, Li L, Yang R, Han J, Liu F, Zhao H. Effective Extraction of the Al Element from Secondary Aluminum Dross Using a Combined Dry Pressing and Alkaline Roasting Process. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5686. [PMID: 36013821 PMCID: PMC9414100 DOI: 10.3390/ma15165686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Secondary aluminum dross (SAD) is a hazardous solid waste discharged from aluminum electrolysis and processing and the secondary aluminum industries, which causes severe environmental pollution and public health disasters. The stable presence of the α-Al2O3 and MgAl2O4 phases in SAD makes it difficult for it to be efficiently utilized. A combined dry pressing and alkaline roasting process was proposed for extracting the valuable Al element from SAD. Two alkaline additives (NaOH and Na2CO3) were selected as a sodium source for extracting the aluminum source from SAD in order to perform the thermodynamic analysis and roasting experiments. The phase transition behavior and the leaching performance tests were conducted using X-ray diffraction, scanning electron microscopy, X-ray fluorescence, leaching kinetics and thermal analysis. The recovery of Al and Na reached the values of 90.79% and 92.03%, respectively, under the optimal conditions (roasting temperature of 1150 °C, Na2CO3/Al2O3 molar ratio of 1.3, roasting time of 1 h, leaching temperature of 90 °C, L/S ratio of 10 mL·g-1 and leaching time of 30 min). Meanwhile, the removal efficiency of N and Cl reached 98.93% and 97.14%, respectively. The leaching kinetics indicated that the dissolution of NaAlO2 clinkers was a first-order reaction and controlled by layer diffusion process. The green detoxification and effective extraction of the Al element from SAD were simultaneously achieved without any pretreatments.
Collapse
Affiliation(s)
- Han Lv
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingzhuang Xie
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zegang Wu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lili Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Runjie Yang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinshan Han
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengqin Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongliang Zhao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Preparation of Sintered Brick with Aluminum Dross and Optimization of Process Parameters. COATINGS 2021. [DOI: 10.3390/coatings11091039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aluminum dross is produced in the process of industrial production and regeneration of aluminum. Currently, the main way to deal with aluminum dross is stacking and landfilling, which aggravates environmental pollution and resource waste. In order to find a green and environmental protection method for the comprehensive utilization, the aluminum dross was used as raw materials to prepare sintered brick. Firstly, the raw material ratio, molding pressure and sintering process were determined by single factor test and orthogonal test, and the mechanism of obvious change of mechanical strength of sintered brick was studied by XRD and SEM. The experimental results show that, the optimal formula of sintered brick is 50% aluminum dross, 37.50% engineering soil and 12.50% coal gangue. The optimum process parameters are molding pressure 10 MPa, heating rate 8 °C/ min, sintering temperature 800 °C, holding time 60 min. The samples prepared under the above formula and process parameters present outstanding performance, and the compressive strength, flexural strength and water absorption rate are 16.21 MPa, 3.42 MPa and 17.12% respectively.
Collapse
|