1
|
Xie Y, Wang X, Men J, Zhu M, Liang C, Ding H, Du Z, Bao P, Hu Z. Selective Adsorption of Sr(II) from Aqueous Solution by Na 3FePO 4CO 3: Experimental and DFT Studies. Molecules 2024; 29:2908. [PMID: 38930973 PMCID: PMC11206743 DOI: 10.3390/molecules29122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The efficient segregation of radioactive nuclides from low-level radioactive liquid waste (LLRW) is paramount for nuclear emergency protocols and waste minimization. Here, we synthesized Na3FePO4CO3 (NFPC) via a one-pot hydrothermal method and applied it for the first time to the selective separation of Sr2+ from simulated LLRW. Static adsorption experimental results indicated that the distribution coefficient Kd remained above 5000 mL·g-1, even when the concentration of interfering ions was more than 40 times that of Sr2+. Furthermore, the removal efficiency of Sr2+ showed no significant change within the pH range of 4 to 9. The adsorption of Sr2+ fitted the pseudo-second-order kinetic model and the Langmuir isotherm model, with an equilibrium time of 36 min and a maximum adsorption capacity of 99.6 mg·g-1. Notably, the adsorption capacity was observed to increment marginally with an elevation in temperature. Characterization analyses and density functional theory (DFT) calculations elucidated the adsorption mechanism, demonstrating that Sr2+ initially engaged in an ion exchange reaction with Na+. Subsequently, Sr2+ coordinated with four oxygen atoms on the NFPC (100) facet, establishing a robust Sr-O bond via orbital hybridization.
Collapse
Affiliation(s)
| | | | - Jinfeng Men
- College of Nuclear Science and Technology, Naval University of Engineering, Wuhan 430033, China; (Y.X.); (X.W.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Feng L, Chen X, Cao M, Zhao S, Wang H, Chen D, Ma Y, Liu T, Wang N, Yuan Y. Decorating Channel Walls in Metal-Organic Frameworks with Crown Ethers for Efficient and Selective Separation of Radioactive Strontium(II). Angew Chem Int Ed Engl 2023; 62:e202312894. [PMID: 37743666 DOI: 10.1002/anie.202312894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Nuclear accidents and the improper disposal of nuclear wastes have led to serious environmental radioactive pollutions. The rational design of adsorbents for the highly efficient separation of strontium(II) is essential in treating nuclear waste and recovering radioactive strontium resources. Metal-organic frameworks (MOFs) are potential materials for the separation of aqueous metal ions owing to their designable structure and tunable functionality. Herein, a novel 3D MOF material MOF-18Cr6, in which 1D channels are formed using 18-crown-6-ether-containing ligands as channel walls, is fabricated for strontium(II) separation. In contrast to traditional MOFs designed by grafting functional groups in the framework pores, MOF-18Cr6 possesses regular 18-crown-6-ether cavities on the channel walls, which not only can transport and intake strontium(II) via the channels, but also prevent blockage of the channels after the binding of strontium(II). Consequently, the functional sites are fully utilized to achieve a high strontium(II) removal rate of 99.73 % in simulated nuclear wastewater. This study fabricates a highly promising adsorbent for the separation of aqueous radioactive strontium(II), and more importantly, can provide a new strategy for the rational design of high-performance MOF adsorbents for separating target substances from complex aqueous environments.
Collapse
Affiliation(s)
- Lijuan Feng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Xuran Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Meng Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Shilei Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Dan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Yue Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228, Haikou, P. R. China
| |
Collapse
|
3
|
Gill SS, Goyal T, Goswami M, Patel P, Das Gupta G, Verma SK. Remediation of environmental toxicants using carbonaceous materials: opportunity and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27364-9. [PMID: 37160511 DOI: 10.1007/s11356-023-27364-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Adsorption and photocatalytic properties of carbonaceous materials, viz., carbon nanotubes (CNTs), fullerene, graphene, graphene oxide, carbon nanofiber nanospheres, and activated carbon, are the legitimate weapons for the remediation of emerging and persistent inorganic/organic contaminants, heavy metals, and radionucleotides from the environment. High surface area, low or non-toxic nature, ease of synthesis, regeneration, and chemical modification of carbonaceous material make them ideal for the removal of toxicants. The research techniques investigated during the last decade for the elimination of environmental toxicants using carbonaceous materials are reviewed to offer comprehensive insight into the mechanism, efficiency, applications, advantages, and shortcomings. Opportunities and challenges associated with carbon materials have been discussed to suggest future perspectives in the remediation of environmental toxicants.
Collapse
Affiliation(s)
| | - Tanish Goyal
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Megha Goswami
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | - Preeti Patel
- ISF College of Pharmacy, Moga-142 001, Punjab, India
| | | | | |
Collapse
|
4
|
Al-Absi RS, Khan M, Abu-Dieyeh MH, Ben-Hamadou R, Nasser MS, Al-Ghouti MA. The recovery of strontium ions from seawater reverse osmosis brine using novel composite materials of ferrocyanides modified roasted date pits. CHEMOSPHERE 2023; 311:137043. [PMID: 36336019 DOI: 10.1016/j.chemosphere.2022.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/10/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, three types of adsorbents were used to remove and recover strontium ions (Sr2+) from aqueous and brine solution of seawater reverse osmosis (SWRO), namely roasted date pits (RDP) and RDP modified using copper and nickel salts of potassium hexacyanoferrates to obtain RDP-FC-Cu, and RDP-FC-Ni, respectively. Additionally, the influence of various parameters, including pH, temperature, initial concentration, and co-existing ions was also evaluated. The results revealed that pH 10 was the optimum pH in which the maximum Sr2+ ions were adsorbed. Additionally, all adsorbents had a high adsorption capacity (99.9 mg/g) for removing Sr2+ ions at the highest concentration (100 mg/L) and a temperature of 45 °C was found to be the optimum temperature. A scanning electron microscopy for the adsorbents before and after the adsorption of strontium showed the remarkable pore filling onto the active sites of all adsorbents. The thermodynamics parameter demonstrated that the adsorption occurred in an endothermic environment, and that, the reaction was spontaneous, and favorable at all the temperatures investigated. According to isotherm studies, the Langmuir model was the best-fit isotherm model; indicating that strontium adsorption involved the formation of monolayers and multilayers at higher temperatures (45 °C). Furthermore, high desorption percentages (above 90%) were achieved for all the adsorbents when an HCl concentration of 0.5 M was used. This showed the high reusability of the adsorbents. Lastly, the adsorption of strontium from the SWRO brine containing a number of metal ions was extremely sufficient as all the adsorbents were efficient to adsorb a high amount of Sr2+ despite the presence of other competing ions.
Collapse
Affiliation(s)
- Rana S Al-Absi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mariam Khan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mohammed H Abu-Dieyeh
- Biological Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Radhouane Ben-Hamadou
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Mustafa S Nasser
- Gas Processing Center, College of Engineering, Qatar University, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
5
|
Wang S, Li Y, Liu Q, Wang J, Zhao Y, Cai Y, Li H, Chen Z. fvPhoto-/electro-/piezo-catalytic elimination of environmental pollutants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Rasheed Q, Ajab H, Farooq M, Shahzad SA, Yaqub A. Fabrication of colorimetric sensor using Fe3O4 @ Musa paradisiaca L. nanoparticles for detecting hydrogen peroxide: an application in environmental and biological samples. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02571-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Yu S, Tang H, Zhang D, Wang S, Qiu M, Song G, Fu D, Hu B, Wang X. MXenes as emerging nanomaterials in water purification and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152280. [PMID: 34896484 DOI: 10.1016/j.scitotenv.2021.152280] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 05/21/2023]
Abstract
Environmental pollution has accelerated and intensified because of the acceleration of industrialization, therefore fabricating excellent materials to remove hazardous pollutants has become inevitable. MXenes as emerging transition metal nitrides, carbides or carbonitrides with high conductivity, hydrophilicity, excellent structural stability, and versatile surface chemistry, become ideal candidates for water purification and environmental remediation. Particularly, MXenes reveal excellent sorption capability and efficient reduction performance for various contaminants of wastewater. In this regard, a comprehensive understanding of the removal behaviors of MXene-based nanomaterials is necessary to explain how they remove various pollutants in water. The eliminate process of MXene-based nanomaterials is collectively influenced by the physicochemical properties of the materials themselves and the chemical properties of different contaminants. Therefore, in this review paper, the synthesis strategies and properties of MXene-based nanomaterials are briefly introduced. Then, the chemical properties, removal behaviors and interaction mechanisms of heavy metal ions, radionuclides, and organic pollutants by MXene-based nanomaterials are highlighted. The overview also emphasizes associated toxicity, secondary contamination, the challenges, and prospects of the MXene-based nanomaterials in the applications of water treatment. This review can supply valuable ideas for fabricating versatile MXene nanomaterials in eliminating water pollution.
Collapse
Affiliation(s)
- Shujun Yu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hao Tang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Di Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Dong Fu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
8
|
Extraction of Sr2+ from aqueous solutions using an asymmetric pulsed current-assisted electrochemical method. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Engineered Magnetic Carbon-Based Adsorbents for the Removal of Water Priority Pollutants: An Overview. ADSORPT SCI TECHNOL 2021. [DOI: 10.1155/2021/9917444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This review covers the preparation, characterization, and application of magnetic adsorbents obtained from carbon-based sources and their application in the adsorption of both inorganic and organic pollutants from water. Different preparation routes to obtain magnetic adsorbents from activated carbon, biochar, hydrochar, graphene, carbon dots, carbon nanotubes, and carbon nanocages, including the magnetic phase incorporated on the solid surface, are described and discussed. The performance of these adsorbents is analyzed for the removal of fluoride, arsenic, heavy metals, dyes, pesticides, pharmaceuticals, and other emerging and relevant water pollutants. Properties of these adsorbents and the corresponding adsorption mechanisms have been included in this review. Overall, this type of magnetic adsorbents offers an alternative for facing the operational problems associated to adsorption process in water treatment. However, some gaps have been identified in the proper physicochemical characterization of these adsorbents, the development of green and low-cost preparation methods for their industrial production and commercialization, the regeneration and final disposal of spent adsorbents, and their application in the multicomponent adsorption of water pollutants.
Collapse
|