1
|
Das SK, Sen K, Ghosh B, Ghosh N, Sinha K, Sil PC. Molecular mechanism of nanomaterials induced liver injury: A review. World J Hepatol 2024; 16:566-600. [PMID: 38689743 PMCID: PMC11056894 DOI: 10.4254/wjh.v16.i4.566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024] Open
Abstract
The unique physicochemical properties inherent to nanoscale materials have unveiled numerous potential applications, spanning beyond the pharmaceutical and medical sectors into various consumer industries like food and cosmetics. Consequently, humans encounter nanomaterials through diverse exposure routes, giving rise to potential health considerations. Noteworthy among these materials are silica and specific metallic nanoparticles, extensively utilized in consumer products, which have garnered substantial attention due to their propensity to accumulate and induce adverse effects in the liver. This review paper aims to provide an exhaustive examination of the molecular mechanisms underpinning nanomaterial-induced hepatotoxicity, drawing insights from both in vitro and in vivo studies. Primarily, the most frequently observed manifestations of toxicity following the exposure of cells or animal models to various nanomaterials involve the initiation of oxidative stress and inflammation. Additionally, we delve into the existing in vitro models employed for evaluating the hepatotoxic effects of nanomaterials, emphasizing the persistent endeavors to advance and bolster the reliability of these models for nanotoxicology research.
Collapse
Affiliation(s)
- Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata 700064, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata 700013, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram 721507, India.
| | - Parames C Sil
- Department of Molecular Medicine, Bose Institute, Calcutta 700054, India
| |
Collapse
|
2
|
Wu D, Sun H, Yang B, Song E, Song Y, Tan W. Exosome Heterogeneity Affects the Distal "Barrier-Crossing" Trafficking of Exosome Encapsulated Quantum Dots. ACS NANO 2024; 18:7907-7922. [PMID: 38394382 DOI: 10.1021/acsnano.3c09378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The biological activities of nanoparticles (NPs), which include endocytosis by macrophages and subsequent intracellular degradation and/or release, transfer to other cells, or translocation across tissue barriers, highly depend on their fate in living organisms. Yet, translocation across barriers, especially the distal "barrier-crossing" trafficking of NPs, is still unclear. The exosome (Exo) plays a crucial role in intercellular communication and biological barrier trafficking. Here, we report that ZnCdSe@ZnS quantum dots (QDs), as a representation of NPs in biomedical applications, could cross the blood-brain barrier and approach the mouse brain via active Exo encapsulation. By employing multiple techniques, we demonstrated that QDs were internalized by macrophages (J774A.1) and tumor cells (HeLa) and then released to the extracellular environment along with Exo. Exo encapsulation facilitates the distal barrier-crossing trafficking of QDs in vivo, while Exo biogenesis inhibitor GW4869 suppressed the QDs enriched in the brains of mice with a 4T1-Luc breast cancer xenograft. Interestingly, Exo heterogeneity affects the distal trafficking of enveloped QDs. Exo derived from tumorous HeLa cells, not macrophages, that were enriched in functional proteins with cell adhesion, cell migration, axon guidance, and cell motility, showed a better capacity for the remote trafficking of QDs. This study proposes Exo as a vehicle to deliver exogenous NPs to translocate across the distal barrier and provides further information for biomedical application and the risk assessment of NPs.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Hang Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Xu JY, Liu XJ, Huang HN, Xu YH, Zhong Z, Li Y, Zeng RJ, Lü J, Cao R. Facile synthesis of compact CdS−CuS heterostructures for optimal CO2−to−syngas photoconversion. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00097k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a facile two−step synthetic pathway was developed to construct compact CdS−CuS heterostructures for syngas production via CO2 photoreduction. The photocatalytic activity of CdS−CuS−2 was testified with a syngas yield...
Collapse
|