1
|
Zhang Y, Wang B, Hassan M, Zhang X. Biochar coupled with multiple technologies for the removal of nitrogen and phosphorus from water: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122407. [PMID: 39265490 DOI: 10.1016/j.jenvman.2024.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
Water eutrophication caused by nitrogen (N) and phosphorus (P) has become a global environmental issue. Biochar is a competent adsorbent for removing N and P from wastewater. However, compared with commercial activated carbon, biochar has relatively limited adsorption capacity. To broaden the field scale application of biochar, biochar coupled with multiple technologies (BC-MTs) (such as microorganisms, electrochemistry, biofilm, phytoremediation, etc.) have been extensively developed for environmental remediation. Nevertheless, due to the fluctuations and differences in biochar types, coupling methods, and wastewater types, various techniques show different removal mechanisms and performance, hindering the promotion and application of BC-MTs. A systematic review of the research progress of BC-MTs is highly necessary to gain a better understanding of the current research status and progress, as well as to promote the application of these techniques. In this paper, the application of pristine and modified biochar in adsorbing N and P in wastewater is critically reviewed. Then the removal performance, influencing factors, mechanisms, and the environmental applications of BC-MTs in wastewater are systematically summarized. In addition, the cost analysis and risk assessment of BC-MTs in environmental applications are conducted. Finally, suggestions and prospects for future research and practical application are put forward.
Collapse
Affiliation(s)
- Yaping Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| |
Collapse
|
2
|
Jin X, Yang N, Xu D, Song C, Liu H. Insight into a single-chamber air-cathode microbial fuel cell for nitrate removal and ecological roles. Front Bioeng Biotechnol 2024; 12:1397294. [PMID: 39040496 PMCID: PMC11260741 DOI: 10.3389/fbioe.2024.1397294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/27/2024] [Indexed: 07/24/2024] Open
Abstract
Bioelectrochemical systems are sustainable and potential technology systems in wastewater treatment for nitrogen removal. The present study fabricated an air-cathode denitrifying microbial fuel cell (DNMFC) with a revisable modular design and investigated metabolic processes using nutrients together with the spatiotemporal distribution characteristics of dominated microorganisms. Based on the detection of organics and solvable nitrogen concentrations as well as electron generations in DNMFCs under different conditions, the distribution pattern of nutrients could be quantified. By calculation, it was found that heterotrophic denitrification performed in DNMFCs using 56.6% COD decreased the Coulombic efficiency from 38.0% to 16.5% at a COD/NO3 --N ratio of 7. Furthermore, biological denitrification removed 92.3% of the nitrate, while the residual was reduced via electrochemical denitrification in the cathode. Correspondingly, nitrate as the electron acceptor consumed 16.7% of all the generated electrons, and the residual electrons were accepted by oxygen. Microbial community analysis revealed that bifunctional bacteria of electroactive denitrifying bacteria distributed all over the reactor determined the DNMFC performance; meanwhile, electroactive bacteria were mainly distributed in the anode biofilm, anaerobic denitrifying bacteria adhered to the wall, and facultative anaerobic denitrifying bacteria were distributed in the wall and cathode. Characterizing the contribution of specific microorganisms in DNMFCs comprehensively revealed the significant role of electroactive denitrifying bacteria and their cooperative relationship with other functional bacteria.
Collapse
Affiliation(s)
- Xiaojun Jin
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
- CAS Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Nuan Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, China
| | - Cheng Song
- CAS Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Hong Liu
- CAS Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
3
|
Bhattacharya A, Garg S, Chatterjee P. Examining current trends and future outlook of bio-electrochemical systems (BES) for nutrient conversion and recovery: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86699-86740. [PMID: 37438499 DOI: 10.1007/s11356-023-28500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Nutrient-rich waste streams from domestic and industrial sources and the increasing application of synthetic fertilizers have resulted in a huge-scale influx of reactive nitrogen and phosphorus in the environment. The higher concentrations of these pollutants induce eutrophication and foster degradation of aquatic biodiversity. Besides, phosphorus being non-renewable resource is under the risk of rapid depletion. Hence, recovery and reuse of the phosphorus and nitrogen are necessary. Over the years, nutrient recovery, low-carbon energy, and sustainable bioremediation of wastewater have received significant interest. The conventional wastewater treatment technologies have higher energy demand and nutrient removal entails a major cost in the treatment process. For these issues, bio-electrochemical system (BES) has been considered as sustainable and environment friendly wastewater treatment technologies that utilize the energy contained in the wastewater so as to recovery nutrients and purify wastewater. Therefore, this article comprehensively focuses and critically analyzes the potential sources of nutrients, working mechanism of BES, and different nutrient recovery strategies to unlock the upscaling opportunities. Also, economic analysis was done to understand the technical feasibility and potential market value of recovered nutrients. Hence, this review article will be useful in establishing waste management policies and framework along with development of advanced configurations with major emphasis on nutrient recovery rather than removal from the waste stream.
Collapse
Affiliation(s)
- Ayushman Bhattacharya
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Shashank Garg
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285
| | - Pritha Chatterjee
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India, 502285.
| |
Collapse
|
4
|
Yang N, Luo H, Liu M, Xiong X, Jin X, Zhan G. Coupling mixotrophic denitrification and electroactive anodic nitrification by nitrate addition for promoting current generation and nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159082. [PMID: 36174696 DOI: 10.1016/j.scitotenv.2022.159082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Nitrate promotes anodic denitrification and fasts organic matter removal in microbial fuel cells (MFCs). However, it suffers from poor total nitrogen (TN) removal and current recovery. In this study, some novel electroactive nitrifying/denitrifying bacteria (ENDB) were introduced in a single chambered air-cathode MFC to investigate the performance of this device and the microbial community shift by adding nitrate. Results showed a similar disturbance in current output by adding nitrate during a short-term operation. However, a stable and reproducible current increase was achieved in the continuous experiment. A maximum current of 0.76 A m-3 and a maximum TN removal of >99 % were accomplished. The corresponding corrected coulombic efficiency was approximately 18 %. Under repeatable batches, a sharp decrease in chemical oxygen demand (COD) with feeding nitrate confirmed the temporary competition on electron donors through heterotrophic denitrification. The later current increase and nitrite detection occurring without metabolized COD could be considered evidence of electroactive anodic nitrification. The ENDB biofilm successfully coupled mixotrophic denitrification and electroactive anodic nitrification. It eventually promoted TN removal. In the process, genera Pseudoxanthomonas, Thauera, and Pseudomonas were enriched in the anodic ENDB biofilms. Cyclic voltammetry data confirmed the promotion of the electron transfer process by biofilms. The bacterial function predication revealed that the genes related to nitrogen removal and electron transfer were upregulated. Therefore, mixotrophic denitrification and electroactive anodic nitrification processes facilitated power recovery with the high efficiency of pollutant removal, finally ensuring water body security.
Collapse
Affiliation(s)
- Nuan Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China.
| | - Huiqin Luo
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China
| | - Ming Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China
| | - Xia Xiong
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China
| | - Xiaojun Jin
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences (CIBCAS), Chengdu 610041, China
| |
Collapse
|
5
|
Moreno-Jimenez DA, Kim KY. Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2022; 350:126881. [PMID: 35217164 DOI: 10.1016/j.biortech.2022.126881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
A nickel-functionalized activated carbon (AC/Ni) was recently developed for microbial electrolysis cells (MECs) and showed a great potential for large-scale applications. In this study, the electroactivity of the AC/Ni cathode was significantly improved by increasing the oxygen (16.9%) and nitrogen (124%) containing species on the AC using nitric acid oxidation. The acid-treated AC (t-AC) showed 21% enhanced wettability that consequently reduced the ohmic resistance (6.7%) and the charge transfer resistance (33.3%). As a result, t-AC/Ni achieved peak values of hydrogen production rate (0.35 ± 0.02 L-H2/L-d), energy yield (129 ± 8%), and cathodic hydrogen recovery (93 ± 6%) in MECs. The hydrogen production rate was 84% higher using t-AC/Ni cathode than the control, likely due to the enhanced wettability and a higher fraction of N on the t-AC. Also, the increases in polyvinylidene fluoride (PVDF) binder loadings (from 4.6 mg-PVDF/cm2 to 7.3 mg-PVDF/cm2) demonstrated 47% higher hydrogen productions rates in MECs.
Collapse
Affiliation(s)
- Daniel A Moreno-Jimenez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
6
|
Walter XA, Madrid E, Gajda I, Greenman J, Ieropoulos I. Microbial fuel cell scale-up options: Performance evaluation of membrane ( c-MFC) and membrane-less ( s-MFC) systems under different feeding regimes. JOURNAL OF POWER SOURCES 2022; 520:230875. [PMID: 35125632 PMCID: PMC8795817 DOI: 10.1016/j.jpowsour.2021.230875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 05/30/2023]
Abstract
In recent years, bioelectrochemical systems have advanced towards upscaling applications and tested during field trials, primarily for wastewater treatment. Amongst reported trials, two designs of urine-fed microbial fuel cells (MFCs) were tested successfully on a pilot scale as autonomous sanitation systems for decentralised area. These designs, known as ceramic MFCs ( c -MFCs) and self-stratifying MFCs ( s -MFC), have never been calibrated under similar conditions. Here, the most advanced versions of both designs were assembled and tested under similar feeding conditions. The performance and efficiency were evaluated under different hydraulic retention times (HRT), through chemical oxygen demand measures and polarisation experiments. Results show that c -MFCs displayed constant performance independently from the HRT (32.2 ± 3.9 W m-3) whilst displaying high energy conversion efficiency at longer HRT (NER COD = 2.092 ± 0.119 KWh.Kg COD -1, at 24h HRT). The s -MFC showed a correlation between performance and HRT. The highest performance was reached under short HRT (69.7 ± 0.4 W m-3 at 3h HRT), but the energy conversion efficiency was constant independently from the HRT (0.338 ± 0.029 KWh.Kg COD -1). The c -MFCs and s -MFCs similarly showed the highest volumetric efficiency under long HRT (65h) with NER V of 0.747 ± 0.010 KWh.m-3 and 0.825 ± 0.086 KWh.m-3, respectively. Overall, c -MFCs seems more appropriate for longer HRT and s -MFCs for shorter HRT.
Collapse
Affiliation(s)
- Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Elena Madrid
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Iwona Gajda
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
7
|
Suresh R, Rajendran S, Kumar PS, Dutta K, Vo DVN. Current advances in microbial fuel cell technology toward removal of organic contaminants - A review. CHEMOSPHERE 2022; 287:132186. [PMID: 34509759 DOI: 10.1016/j.chemosphere.2021.132186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 05/27/2023]
Abstract
At present, water pollution and demand for clean energy are most pressing global issues. On a daily basis, huge quantity of organic wastes gets released into the water ecosystems, causing health related problems. The need-of-the-hour is to utilize proficient and cheaper techniques for complete removal of harmful organic contaminants from water. In this regard, microbial fuel cell (MFC) has emerged as a promising technique, which can produce useful electrical energy from organic wastes and decontaminate polluted water. Herein, we have systematically reviewed recently published results, observations and progress made on the applications of MFCs in degradation of organic contaminants, including organic synthetic dyes, agro pollutants, health care contaminants and other organics (such as phenols and their derivatives, polyhydrocarbons and caffeine). MFC-based hybrid technologies, including MFC-constructed wetland, MFC-photocatalysis, MFC-catalysis, MFC-Fenton process, etc., developed to obtain high removal efficiency and bioelectricity production simultaneously have been discussed. Further, this review assessed the influence of factors, such as nature of electrode catalysts, organic pollutants, electrolyte, microbes and operational conditions, on the performance of pristine and hybrid MFC reactors in terms of pollutant removal efficiency and power generation simultaneously. Moreover, the limitations and future research directions of MFCs for wastewater treatment have been discussed. Finally, a conclusive summary of the findings has been outlined.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
8
|
Chawley P, Rana A, Jagadevan S. Envisioning role of ammonia oxidizing bacteria in bioenergy production and its challenges: a review. Crit Rev Biotechnol 2021; 42:931-952. [PMID: 34641754 DOI: 10.1080/07388551.2021.1976099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.
Collapse
Affiliation(s)
- Parmita Chawley
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|