1
|
Borkenhagen A, Cooper DJ, House M, Vitt DH. Establishing peat-forming plant communities: A comparison of wetland reclamation methods in Alberta's oil sands region. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2929. [PMID: 37942503 DOI: 10.1002/eap.2929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023]
Abstract
The Sandhill Wetland (SW) and Nikanotee Fen (NF) are two wetland research projects designed to test the viability of peatland reclamation in the Alberta oil sands post-mining landscape. To identify effective approaches for establishing peat-forming vegetation in reclaimed wetlands, we evaluated how plant introduction approaches and water level gradients influence species distribution, plant community development, and the establishment of bryophyte and peatland species richness and cover. Plant introduction approaches included seeding with a Carex aquatilis-dominated seed mix, planting C. aquatilis and Juncus balticus seedlings, and spreading a harvested moss layer transfer. Establishment was assessed 6 years after the introduction at SW and 5 years after the introduction at NF. In total, 51 species were introduced to the reclaimed wetlands, and 122 species were observed after 5 and 6 years. The most abundant species in both reclaimed wetlands was C. aquatilis, which produced dense canopies and occupied the largest water level range of observed plants. Introducing C. aquatilis also helped to exclude marsh plants such as Typha latifolia that has little to no peat accumulation potential. Juncus balticus persisted where the water table was lower and encouraged the formation of a diverse peatland community and facilitated bryophyte establishment. Various bryophytes colonized suitable areas, but the moss layer transfer increased the cover of desirable peat-forming mosses. Communities with the highest bryophyte and peatland species richness and cover (averaging 9 and 14 species, and 50%-160% cover respectively) occurred where the summer water level was between -10 and -40 cm. Outside this water level range, a marsh community of Typha latifolia dominated in standing water and a wet meadow upland community of Calamagrostis canadensis and woody species established where the water table was deeper. Overall, the two wetland reclamation projects demonstrated that establishing peat-forming vascular plants and bryophytes is possible, and community formation is dependent upon water level and plant introduction approaches. Future projects should aim to create microtopography with water tables within 40 cm of the surface and introduce vascular plants such as J. balticus that facilitate bryophyte establishment and support the development of a diverse peatland plant community.
Collapse
Affiliation(s)
- Andrea Borkenhagen
- Department of Forest and Rangeland Stewardship and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - David J Cooper
- Department of Forest and Rangeland Stewardship and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Melissa House
- School of Biological Sciences-Plant Biology, Southern Illinois University, Carbondale, Illinois, USA
| | - Dale H Vitt
- School of Biological Sciences-Plant Biology, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
2
|
Yu H, Zhang X, Meng X, Luo D, Yue Z, Li Y, Yu Y, Yao H. Comparing the variations and influencing factors of CH 4 emissions from paddies and wetlands under CO 2 enrichment: A data synthesis in the last three decades. ENVIRONMENTAL RESEARCH 2023; 228:115842. [PMID: 37024028 DOI: 10.1016/j.envres.2023.115842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
Understanding and quantifying the impact of elevated tropospheric carbon dioxide concentration (e [CO2]) on methane (CH4) globally is important for effectively assessing and mitigating climate warming. Paddies and wetlands are the two important sources of CH4 emissions. Yet, a quantitative synthetic investigation of the effects of e [CO2] on CH4 emissions from paddies and wetlands on a global scale has not been conducted. Here, we conducted a meta-analysis of 488 observation cases from 40 studies to assess the long-term effects of e [CO2] (ambient [CO2]+ 53-400 μmol mol-1) on CH4 emissions and to identify the relevant key drivers. On aggregate, e [CO2] increased CH4 emissions by 25.7% (p < 0.05) from paddies but did not affect CH4 emissions from wetlands (-3.29%; p > 0.05). The e [CO2] effects on paddy CH4 emissions were positively related to that on belowground biomass and soil-dissolved CH4 content. However, these factors under e [CO2] resulted in no significant change in CH4 emissions in wetlands. Particularly, the e [CO2]-induced abundance of methanogens increased in paddies but decreased in wetlands. In addition, tillering number of rice and water table levels affected e [CO2]-induced CH4 emissions in paddies and wetlands, respectively. On a global scale, CH4 emissions changed from an increase (+0.13 and + 0.86 Pg CO2-eq yr-1) under short-term e [CO2] into a decrease and no changes (-0.22 and + 0.03 Pg CO2-eq yr-1) under long-term e [CO2] in paddies and wetlands, respectively. This suggested that e [CO2]-induced CH4 emissions from paddies and wetlands changed over time. Our results not only shed light on the different stimulative responses of CH4 emissions to e [CO2] from paddy and wetland ecosystems but also suggest that estimates of e [CO2]-induced CH4 emissions from global paddies and wetlands need to account for long-term changes in various regions.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xuechen Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiangtian Meng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Dan Luo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfu Yue
- Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yongxiang Yu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China.
| |
Collapse
|
3
|
Liu W, Fritz C, van Belle J, Nonhebel S. Production in peatlands: Comparing ecosystem services of different land use options following conventional farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162534. [PMID: 36878291 DOI: 10.1016/j.scitotenv.2023.162534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Majority of Dutch peatlands are drained and used intensively as grasslands for dairy farming. This delivers high productivity but causes severe damage to ecosystem services supply. Peatland rewetting is the best way to reverse the damage, but high water levels do not fit with intensive dairy production. Paludiculture, defined as crop production under wet conditions, provides viable land use alternatives. However, performance of paludiculture is rarely compared to drainage-based agriculture. Here, we compared the performances of six land use options on peatland following a gradient of low, medium, and high water levels, including conventional and organic drainage-based dairy farming, low-input grasslands for grazing and mowing, and high-input paludiculture with reed and Sphagnum cultivation. For each land use option, we conducted environmental system analysis on model farm system defined by a literature based inventory analysis. The analysis used five ecosystem services as indicators of environmental impacts with a functional unit of 1-ha peat soil. Ecosystem services included biomass provisioning, climate, water, and nutrient regulation, and maintenance of habitat. Results showed that drainage-based dairy farming systems support high provisioning services but low regulation and maintenance services. Organic farming provides higher climate and nutrient regulation services than its conventional counterpart, but limited overall improvement due to the persistent drainage. Low-intensity grassland and paludiculture systems have high regulation and maintenance services value, but do not supply biomass provisioning comparable to the drainage-based systems. Without capitalizing the co-benefits of regulation and maintenance services, and accounting for the societal costs from ecosystem disservices including greenhouse gas emission and nitrogen pollution, it is not likely that the farmers will be incentivized to change the current farming system towards the wetter alternatives. Sustainable use of peatlands urges fundamental changes in land and water management along with the financial and policy support required.
Collapse
Affiliation(s)
- Weier Liu
- Integrated Research on Energy, Environment and Society (IREES), University of Groningen, the Netherlands.
| | - Christian Fritz
- Integrated Research on Energy, Environment and Society (IREES), University of Groningen, the Netherlands; Institute for Water and Wetland Research, Radboud University Nijmegen, the Netherlands
| | - Jasper van Belle
- Van Hall Larenstein University of Applied Sciences, the Netherlands
| | - Sanderine Nonhebel
- Integrated Research on Energy, Environment and Society (IREES), University of Groningen, the Netherlands
| |
Collapse
|