1
|
Le HQ, Chen SS, Duong CC, Nguyen NC, Nguyen TXQ, Chien IC, Hsiao SS. Assessment of temperature dynamics and microbial community responses in aerobic membrane bioreactors from mesophilic to hyper-thermophilic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65849-65865. [PMID: 39607663 DOI: 10.1007/s11356-024-35561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
This study investigates the impact of temperature variations on the performance of an aerobic membrane bioreactor (MBR) as it transitions from mesophilic (30 °C) to hyper-thermophilic (65 °C) conditions. The microbial community structure was analyzed using 16S rRNA gene sequencing to assess how temperature influences microbial diversity and composition. In mesophilic conditions, the system exhibited high alpha diversity with a Shannon index of 5.92 and 224 observed species. As the temperature increased to 45 °C and 65 °C, diversity decreased significantly, with Shannon indices of 2.54 and 2.82, and 96 and 77 observed species, respectively. Additionally, nutrient removal efficiency, particularly for ammonia and phosphorus, declined at higher temperatures. COD removal efficiency reached 96.5% at 30 °C but decreased to 57% at 45 °C before recovering to 94% at 65 °C. Notably, biomass yield at hyper-thermophilic conditions was 37% lower than at mesophilic conditions, with a yield of 0.06 gVSS/gCODremoved. These findings highlight the potential advantages of operating under hyper-thermophilic conditions, including reduced sludge production, lower nutrient requirements, and increased organic loading capacity. The results provide valuable insights into optimizing high-temperature wastewater treatment processes for more efficient and sustainable industrial applications.
Collapse
Affiliation(s)
- Huy Quang Le
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
- Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Vietnam
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan.
| | - Chinh Cong Duong
- Southern Institute of Water Resources Research, 658 Vo Van Kiet Street, District 5, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Cong Nguyen
- Faculty of Chemistry and Environment, Dalat University, 01 Phu Dong Thien Vuong Street, Da Lat City, 66000, Vietnam
| | - Thi Xuan Quynh Nguyen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
| | - I-Chieh Chien
- Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, 251301, Taiwan
| | - Shiang-Sheng Hsiao
- Institute of Environmental Engineering and Management, National Taipei University of Technology, No.1, Sec. 3, Zhongxiao E. Rd., Taipei, 10608, Taiwan
| |
Collapse
|
2
|
Msimango SS, Nasr M, Bux F, Kumari S. Impact of chemical oxygen demand to nitrogen ratio on ANAMMOX bacterial growth in an up-flow anaerobic sludge blanket reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:2978-2990. [PMID: 39673314 DOI: 10.2166/wst.2024.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/17/2024] [Indexed: 12/16/2024]
Abstract
While several studies have investigated the effect of varying carbon-to-nitrogen (C/N) ratios on the ANAMMOX performance, there is still a research gap in illustrating the shift in 16S rRNA gene copy number and functional microbial population during operation. Hence, this study focuses on utilizing a reference gene and target functional genes to demonstrate the synergetic interaction between ANAMMOX, ammonia-oxidizing bacteria (AOB), and nitrite-oxidizing bacteria (NOB), using an up-flow anaerobic sludge blanket (UASB) under different C/N conditions. It was demonstrated that elevating the C/N ratio from 1.0 to 2.0 reduced the COD and NH4+-N removal efficiencies from 80.12 to 48.62% and from 88.99 to 72.59%, respectively. Based on the qPCR evaluation, at the C/N ratio of 1.5, the abundance of ANAMMOX, AOB, Nitrobacter, and Nitrospira was 2.52 × 106, 82, 5.39 × 103, and 12.98 × 103 copies/μL, respectively. However, with the further increase of C/N ratio to 2.0, their abundance was reduced to 1.09 × 106, 46, 0.98 × 103, and 3.47 × 103 copies/μL, respectively. The expression of hzo gene encoding for hydrazine dehydrogenase was 169-folds at C/N = 1 and almost inhibited at C/N = 2. The results of microbial population structure using 16S rRNA reverse transcriptase (RT)-qPCR technique depicted a competition between ANAMMOX and heterotrophic bacteria for the available substrate at higher C/N ratios.
Collapse
Affiliation(s)
- Sandile S Msimango
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt; Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa E-mail:
| |
Collapse
|
3
|
Yan X, Liu D, de Smit SM, Komin V, Buisman CJN, Ter Heijne A. Oxygen-to-ammonium-nitrogen ratio as an indicator for oxygen supply management in microoxic bioanodic ammonium oxidation. WATER RESEARCH 2024; 261:121993. [PMID: 38968732 DOI: 10.1016/j.watres.2024.121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Microbial electrolysis cells (MECs) have been proven effective for oxidizing ammonium (NH4+), where the anode acts as an electron acceptor, reducing the energy input by substituting oxygen (O2). However, O2 has been proved to be essential for achieving high removal rates MECs. Thus, precise control of oxygen supply is crucial for optimizing treatment performance and minimizing energy consumption. Unlike previous studies focusing on dissolved oxygen (DO) levels, this study introduces the O2/NH4+-N ratio as a novel control parameter for balancing oxidation rates and the selectivity of NH4+ oxidation towards dinitrogen gas (N2) under limited oxygen condition. Our results demonstrated that the O2/NH4+-N ratio is a more relevant oxygen supply indicator compared to DO level. Oxygen served as a more favorable electron acceptor than the electrode, increasing NH4+ oxidation rates but also resulting in more oxidized products such as nitrate (NO3-). Additionally, nitrous oxide (N2O) and N2 production were higher with the electrode as the electron acceptor compared to oxygen alone. An O2/NH4+-N ratio of 0.5 was found to be optimal, achieving a balance between product selectivity for N2 (51.4 % ± 4.5 %) and oxidation rates (344.6 ± 14.7 mg-N/L*d), with the columbic efficiency of 30.7 % ± 2.0 %. Microbial community analysis revealed that nitrifiers and denitrifiers were the primary bacteria involved, with oxygen promoting the growth of nitrite-oxidizing bacteria, thus facilitating complete NH4+ oxidation to NO3-. Our study provides new insights and guidelines on the appropriate oxygen dosage, offering strategies into optimizing operational conditions for NH4+ removal using MECs.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Dandan Liu
- Paqell B.V., Reactorweg 301, 3542 CE Utrecht, the Netherlands
| | - Sanne M de Smit
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Vera Komin
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
4
|
Afroze N, Kim M, Chowdhury MMI, Haroun B, Andalib M, Umble A, Nakhla G. Effect of thermal shock and sustained heat treatment on mainstream partial nitrification and microbial community in sequencing batch reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6258-6276. [PMID: 38147251 DOI: 10.1007/s11356-023-31421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 12/27/2023]
Abstract
In order to develop a promising means of achieving mainstream short-cut nitrification, this study evaluated the effect of thermal shock on nitrite accumulation using intermittent offline and continuous inline heat treatment of biomass in sequencing batch reactors (SBRs). The SBRs fed with municipal wastewater were operated at a solid retention time of 7 days and nitrogen loading rate of 0.04 gN/L·d to 0.08 gN/L·d without the application of pre-treatment. Contrary to literature studies that showed suppression of nitrite-oxidizing bacteria at temperature 60 to 80 °C, nitrite accumulation was achieved temporarily when 20% of the biomass was heated for 2 h at 47 °C, as well as in continuously heated SBRs at 37 °C and 42 °C. The continuously heated reactors at 37 °C and 42 °C produced a maximum nitrite accumulation ratio (NAR) of 0.59 and 0.79, respectively, whereas the intermittent offline heating at 47 °C-2 h produced a NAR of 0.37. Although nitrite accumulation was stable only for 10-12 days in all heated reactors, this study demonstrates the achievement of mainstream partial nitrification (PN) at lower temperature (42 °C) than that reported in literature and also highlights the potential for achieving PN by implementing heat treatment of a portion of the return activated sludge (RAS) in biological nitrogen removal (BNR) systems. During the time when full nitrification was achieved, Nitrospira was more dominant than Nitrosomonas in all reactors at ratios of 1.4:1, 2.4:1, 2.4:1, and 3.7:1 for the control SBR (22 °C), 47 °C -2 h offline heating SBR, 37 °C SBR, and 42 °C SBR, respectively, suggesting that it may have played a role as a comammox bacteria capable of degrading ammonia to nitrates at elevated temperature.
Collapse
Affiliation(s)
- Niema Afroze
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada.
| | - Mingu Kim
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Mohammad M I Chowdhury
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Basem Haroun
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| | | | - Arthur Umble
- Stantec Water Institute for Technology & Policy, 1560 Broadway, Suite 1800, Denver, CO, 80202-6000, USA
| | - George Nakhla
- Department of Civil and Environmental Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, N6A 5B9, Canada
| |
Collapse
|
5
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
6
|
Lin C, Liu Y, Li YY, Liu J. Difference of high-salinity-induced inhibition of ammonia-oxidising bacteria and nitrite-oxidising bacteria and its applications. BIORESOURCE TECHNOLOGY 2023; 387:129640. [PMID: 37549713 DOI: 10.1016/j.biortech.2023.129640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
The difficulty in achieving stable partial nitritation (PN) is a challenge that limits the application of mainstream anaerobic ammonium oxidation (anammox). This study proposes high-salinity treatment as a novel strategy for inactivating nitrite-oxidising bacteria (NOB). The study indicated that NOB are more sensitive to high salinity than ammonia-oxidising bacteria (AOB). The inhibitory effect on the nitrifier gradually increased with increasing salinity from 0 to 100 g NaCl/L. After 24 h and 35 g NaCl/L inhibition, the AOB and NOB activities were 36.65% and 7.15% of their original activities, respectively. After one high-salinity treatment, nitrite accumulation rate (NAR) was above 33% during nitrification. Moreover, the sludge characteristics remained almost unchanged after suppression. A novel process for achieving mainstream PN was proposed and evaluated based on the results. An energy consumption analysis showed that mainstream PN/anammox based on the ex situ high-salinity treatment can achieve higher energy self-sufficiency compared with activated sludge.
Collapse
Affiliation(s)
- Chihao Lin
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yanxu Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
7
|
Bootrak D, Rongsayamanont W, Jaidumrong T, Rongsayamanont C. Effect of phosphorylated polyvinyl alcohol matrix size of cell entrapment on partial nitrification of ammonia in wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:4033-4045. [PMID: 35549830 DOI: 10.1080/09593330.2022.2078231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Partial nitrification is known as first and critical step for autotrophic nitrogen removal in high strength nitrogenous wastewater. Phosphorylated polyvinyl alcohol gel entrapment was used for suppressing oxygen to nitrite-oxidizing bacteria (NOB) in the gel matrix. The study investigated the effect of the size of gel matrix on partial nitrification. Results show that ammonia-oxidizing bacteria (AOB) proportion in the inoculum rather than the size of gel matrix governed ammonia oxidation. Nitrite oxidation depended on the size of gel matrix not the relative proportions of NOB and AOB in the inoculum. Larger size of gel matrix lead to less in situ oxygen penetration and available for NOB resulting in higher nitrite accumulation. This finding gains a better understanding of using suitable inoculum to control partial nitrification that is beneficial for the preparation of anaerobic ammonium oxidation-suited effluent.
Collapse
Affiliation(s)
- Darak Bootrak
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | | | - Tunyakamon Jaidumrong
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Chaiwat Rongsayamanont
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
8
|
Cho K, Lee S, Jung J, Choi D. Elucidating prioritized factor for mainstream partial nitritation between C/N ratio and dissolved oxygen: Response surface methodology and microbial community shifts. ENVIRONMENTAL RESEARCH 2023; 227:115748. [PMID: 36972772 DOI: 10.1016/j.envres.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Recently, C/N ratio is suggested as a promising control factor with dissolved oxygen (DO) achieving mainstream partial nitritation (PN); however, their combined effects on mainstream PN are still limited. This study evaluated the mainstream PN with respect to the combined factors, and investigated the prioritized factor affecting the community of aerobic functional microbes competing with NOB. Response surface methodology was performed to assess the combined effects of C/N ratio and DO on the activity of functional microbes. Aerobic heterotrophic bacteria (AHB) played the greatest role in oxygen competition among functional microbes, which resulted in relative inhibition of nitrite-oxidizing bacteria (NOB). The combination of high C/N ratio and low DO had a positive role in the relative inhibition of NOB. In bioreactor operation, the PN was successfully achieved at ≥ 1.5 of C/N ratio for 0.5-2.0 mg/L DO conditions. Interestingly, aerobic functional microbes outcompeting NOB were shifted with C/N ratio rather than DO, suggesting C/N ratio is more prioritized factor achieving mainstream PN. These findings will provide insights into how combined aerobic conditions contribute to achieve mainstream PN.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Sangji Lee
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
9
|
Choi D, Jung J. Nitrogen removal enhancement through competitive inhibition of nitrite oxidizing bacteria in mainstream partial nitritation/anammox: Anammox seeding and influent C/N ratios. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Wang S, Teng Z, Li Y, Chen F, Liu X, Liu S, He J, Wang W. A novel vertical dual-loop reactor for rapid start-up of simultaneous partial nitrification and anammox process in treating landfill leachate: Performances and mechanisms. BIORESOURCE TECHNOLOGY 2022; 364:127947. [PMID: 36100189 DOI: 10.1016/j.biortech.2022.127947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
A novel vertical dual-loop reactor (VDLR) was developed to start and conduct a single-stage partial nitritation (PN) and anammox (PN/A) process for treating landfill leachate. Results showed that the total nitrogen (TN) removal reached 1.54 kg N/m3·d in the VDLR. It exhibited excellent mixing uniformity and buffer performance, which can increase the nitrogen removal performance up to 42.1 % via the improvement of anammox granular sludge activity (a particle size of 0.5-1 mm). Mass balance and microbial analysis indicated that the VDLR achieved efficient TN removal via anammox (99.24 %) and AOB (Nitrosomonas and Ellin6067) and anAOB (Candidatus kuenenia) played a vital role in this process.
Collapse
Affiliation(s)
- Siqi Wang
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China; Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Key Laboratory of Green Process and Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun Li
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China.
| | - Fuming Chen
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Xu Liu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Shujie Liu
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Juyuan He
- Qingyan Environmental Technology Co. Ltd, Shenzhen 518057, China
| | - Wei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Wang J, Cai HY, Chen YP. A new pattern of the partial nitrification and Anammox immobilized gel beads: core-shell embedded carrier. ENVIRONMENTAL RESEARCH 2022; 214:113816. [PMID: 35803341 DOI: 10.1016/j.envres.2022.113816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Single-stage partial nitrification and Anammox (PN/A) is an efficient and energy-saving denitrification process for wastewater. However, its application is limited by the growth conditions of microorganisms. Therefore, we improved the PN/A by developing a novel core-shell embedded carrier. With Anammox gel as the core and Ammonia-oxidizing bacteria gel as the shell, these beads can achieve dissolved oxygen partitioning and provide a suitable environment for the growth of different bacteria. On this basis, the influence of the shape of core-shell embedded gel on nitrogen removal performance was systematically studied, and the internal morphology and pore size of gel beads were characterized. The results showed that the nitrogen removal efficiency of spherical and square gels was increased by 33.70% and 13.47%, respectively, in the batch test. Fluorescence in situ hybridization confirmed the stratified growth of ammonia-oxidizing bacteria and Anammox in carriers, and the relative abundance value of the two bacteria were 1.25:1 and 1.43:1, respectively. Although the mechanical strength of square gel beads is slightly higher than that of spherical, spherical gel is considered the most suitable gel shape due to its small pore size and poor pore connectivity, which ensures the matching of internal Anammox and external PN reaction. In the long-term experiment, the core-shell embedded beads still had the design characteristics, and the TN removal efficiency was increased by 36.25% despite occasional oxygen excess.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Hua-Yi Cai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
12
|
Cho K, Bae S, Jung J, Choi D. Effect of aerobic microbes' competition for oxygen on nitrogen removal in mainstream nitritation-anammox systems. CHEMOSPHERE 2022; 305:135493. [PMID: 35764117 DOI: 10.1016/j.chemosphere.2022.135493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/24/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The effects of C/N ratio in mainstream partial nitritation (PN)-anaerobic ammonia oxidation (ANAMMOX) considering competitive relationship of aerobic microbes competing for oxygen were investigated. Thy system was operated for 501 d with various C/N ratio. Competitive growth of aerobic heterotrophic bacteria (AHB) at ≥ 1 of C/N ratio acted effectively on the selective inhibition of nitrite-oxidizing bacteria (NOB) while contributing to stable PN-A. In-depth kinetic analysis indicated oxygen affinity of aerobic microbes was in the order of AHB > ammonia-oxidizing bacteria (AOB) > NOB. In addition, potential of denitritation by AHB could contributed to improving nitrogen removal up to 87.5 ± 4.3%. AHB was comparatively clustered into two groups with a C/N ratio of 1. Nitrosomonas sp. PY1 became predominant while Nitrospira spp. were the major NOB. The potential of AHB in establishing selective inhibition of NOB was identified, which could be a novel approach to stabilze the mainstream PN-A.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Seongeun Bae
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
13
|
Choi D, Sim BO, Jung J. Activation of N-acyl-homoserine lactone-mediated quorum sensing system improves long-term preservation of anammox microorganisms by vacuum lyophilization. CHEMOSPHERE 2022; 301:134743. [PMID: 35489456 DOI: 10.1016/j.chemosphere.2022.134743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/28/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The long-term preservation of anaerobic ammonium oxidation (anammox) microorganisms via vacuum lyophilization process would help commercialize the technique. In this study, vacuum lyophilization was evaluated for the cost-effective long-term preservation of such microorganisms. Skim milk was found to be the most effective cryoprotectant for maintaining the physiological properties (heme c, EPS, and the PN/PS ratio) of anammox microorganisms. Conversely, the vacuum lyophilization technique was shown to cause serious damage to the quorum sensing (QS) system of anammox, so that anammox activity was not adequately recovered afterwards. To overcome this limitation, activation of the AHL-mediated QS system were applied to the vacuum lyophilization process. Endogenous (i.e., fresh anammox sludge of 10%) and exogenous (i.e., C6-HSL of 60 mg/L) QS autoinducers significantly increased anammox activity to 88.2 ± 12.2 and 130.0 ± 12.2 mgTN/gVSS/d, respectively, after 56 d of reactivation. In addition, nitrogen removal potentials were estimated to be 123.5 and 87.5 gTN/m3/d, respectively. The effect of the exogenous QS autoinducer on anammox reactivation was reconfirmed through the comparison experiment. The results of this study will be greatly significant to this field since they improve the feasibility of the once-underestimated vacuum lyophilization technique.
Collapse
Affiliation(s)
- Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Bo-Ok Sim
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
14
|
Choi D, Jung C, Jung J. Evaluation of long-term preservation and reactivation efficiency of anaerobic ammonium oxidation (anammox) microorganisms based on activation energy. BIORESOURCE TECHNOLOGY 2022; 351:126974. [PMID: 35276371 DOI: 10.1016/j.biortech.2022.126974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The preservation efficiency of mainstream (M-ANA) and sidestream anaerobic ammonium oxidation (anammox) (S-ANA) were evaluated based on their activation energy (Ea). The Ea of M-ANA cultivated under low nitrogen loads was lower than that of S-ANA, which greatly contributed to enhancing the viability of anammox during preservation at 4 °C. After preservation for 140 d, the decay rate (bAN) of M-ANA ranged from 0.0012 to 0.0013/d; the bAN of S-ANA was 0.0036-0.0041/d. The addition of hydrazine, which requires minimal energy to activate anammox metabolism, is highly beneficial for the viability of microorganisms. The low Ea of anammox contributes to efficient reactivation with rapid reactivation of heme c, and the addition of hydrazine makes the process more beneficial. Although the specific nitrogen removal rate of the M-SNA seed sludge was much lower than that of S-ANA, the rate of M-ANA became higher after 48 days of reactivation.
Collapse
Affiliation(s)
- Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea
| | - Chaeyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea.
| |
Collapse
|
15
|
Su B, Liu Q, Liang H, Zhou X, Zhang Y, Liu G, Qiao Z. Simultaneous partial nitrification, anammox, and denitrification in an upflow microaerobic membrane bioreactor treating middle concentration of ammonia nitrogen wastewater with low COD/TN ratio. CHEMOSPHERE 2022; 295:133832. [PMID: 35124081 DOI: 10.1016/j.chemosphere.2022.133832] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The rapid start-up and operating characteristics of simultaneous partial nitrification, anammox, and denitrification (SNAD) process was investigated using synthetic wastewater with a low C/N ratio (COD: NH4+-N = 200 mg/L: 200 mg/L) in a novel upflow microaerobic membrane bioreactor (UMMBR). The average removal efficiencies of COD, NH4+-N, and TN in the stable phase were 89%, 96%, and 86%, respectively. Carmine granule, which coexisted with sludge floc, appeared on day 83. The high sludge concentration (12.9-17.2 g/L) and the upflow mode of the UMMBR could establish some anaerobicregions for anammox process. The anammox bacteria and short-cut denitrification (NO2-→N2) bacteria with activities of 4.46 mg NH4+-N/gVSS·h and 2.57 mg NO2--N/gVSS·h contributed TN removal of 39% and 61% on day 129, respectively. High-throughput sequencing analysis revealed that the ammonia-oxidizing archaea (AOA, 49.45% in granule and 17.05% in sludge floc) and ammonia-oxidizing bacterial (AOB, 1.30% in sludge floc) dominated the nitrifying microbial community. Candidatus Jettenia (47.14%) and Denitratisoma (10.92%) mainly existed in granule with positive correlations. Some heterotrophic bacteria (OLB13, SJA-15, 1-20, SBR1031, and SJA-28) in sludge floc benefited system stability and sludge activity and protected Candidatus Jettenia from adverse environments.
Collapse
Affiliation(s)
- Bensheng Su
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qi Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huili Liang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaohua Zhou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuanjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guangqing Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology CO., Ltd, Shandong, 250002, China
| |
Collapse
|
16
|
Evaluation of operating parameters affecting the two-stage nitritatin/anammox process in mainstream flows: From lab-scale to pilot-scale. J Biosci Bioeng 2022; 134:48-54. [DOI: 10.1016/j.jbiosc.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
|