1
|
Zhong H, Zhang S, Zhang X, Yu Y, Li D, Wang S, Xiao J, Tian P. Water-land-energy efficiency and nexus within global agricultural trade during 1995-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175539. [PMID: 39151613 DOI: 10.1016/j.scitotenv.2024.175539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Agricultural product demand driven by population and economic growth poses challenges to water, land, and energy utilization, and this increasing local demand is largely met through trade. However, the efficiency and nexus pattern of the water, land, and energy embodied in agricultural trade are not well understood. This study uses the multi-regional input-output framework to analyze agricultural water, land, and energy utilization efficiency of resource footprints per unit economic output as well as their transfer and nexus pattern in global agricultural trade for 1995-2019. The results show that many international agricultural trade paths are inefficient in the water, land, and energy resource use because the agricultural products in these paths are exported from relatively low- to high-efficiency economies/regions. However, these inefficient transfer paths show an increasing trend over the study period. Regarding the water-land-energy nexus, conflicts are prevalent in land-energy and water-energy couplings. Most trade paths are conducted to alleviate the pressure on a specific resource, inadvertently increasing the pressure on other resources. Although agricultural trade is important for meeting global food demands, it is not consistently beneficial to the local environment when considering agricultural resources use efficiency. This study is expected to improve our understanding of agricultural trade impacts to the agricultural resources and support the sustainable development of global agriculture.
Collapse
Affiliation(s)
- Honglin Zhong
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China
| | - Shiyu Zhang
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| | - Xinyu Zhang
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| | - Yang Yu
- Division of Liberal Studies, Howard Community College, Columbia, MD 21044, United States
| | - Dan Li
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China.
| | - Saige Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jingyi Xiao
- School of Business, Macau University of Science and Technology, Macau 999078, China
| | - Peipei Tian
- Institute of Blue and Green Development, Shandong University, Weihai 264209, China
| |
Collapse
|
2
|
Cai B, Guo M. Exploring the drivers of quantity- and quality-related water scarcity due to trade for each province in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117423. [PMID: 36758404 DOI: 10.1016/j.jenvman.2023.117423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Previous studies have explored virtual water flows due to interprovincial trade within China as well as related impacts on both regional quantity- and quality-related water scarcity aspects. However, the driving forces behind changes in these impacts remain unknown, especially the quality-related water scarcity. Exploring these driving forces can provide targeted measures to mitigate the negative impact of trade on these two types of water scarcity issues. In this study, blue and grey water footprints have been calculated under the consideration of interregional trade between provinces within China and those attributed to international exports from 2007 to 2015. This calculation was based on multi-regional input output model (MRIO). Moreover, the drivers of changes in blue and grey water footprints due to trade have been explored through structural decomposition analysis. The results showed that blue and grey water footprint increased and then slightly decreased from 2007 to 2015 in China. At the same time, interregional trade made an increasing contribution to the blue and grey water footprint, and the proportion increased from 28.8% to 35.0% and from 22.4% to 28.6%, respectively, from 2007 to 2015. The roles of importers and exporters regarding the blue and grey water footprint driven by interprovincial trade within China have changed little, and the quantity- and quality-related water scarcity issues of the main exporters have been intensified by interprovincial trade. A reduction in the water footprint intensity yielded the largest contribution to curb the increase in blue and grey water footprint driven by interprovincial trade. Our study showed that an improvement in efficiency of water use from both quantity and quality perspectives is the key to accomplish sustainable water use in China, especially considering the impact of trade on regional quantity- and quality-related water scarcity issues.
Collapse
Affiliation(s)
- Beiming Cai
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng, 475001, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475001, China; Henan Overseas Expertise Introduction Center for Discipline Innovation (Ecological Protection and Rural Revitalization Along the Yellow River), China.
| | - Mo Guo
- The New Type Key Think Tank of Zhejiang Province "China Research Institute of Regulation and Public Policy", China Institute of Regulation Research, Zhejiang University of Finance & Economics, China.
| |
Collapse
|
3
|
Zhao H, Miller TR, Ishii N, Kawasaki A. Global spatio-temporal change assessment in interregional water stress footprint in China by a high resolution MRIO model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156682. [PMID: 35710018 DOI: 10.1016/j.scitotenv.2022.156682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Developing effective strategies to alleviate increasing water stress in China requires an understanding of how consumption and production drive water stress footprints (WSF) at a high resolution and multiple spatial and temporal scales. However, current Chinese multi-regional input-output (CMRIO) models have limited resolution. Here, we build a high-resolution international MRIO model covering 31 Chinese provinces, 163 sectors, to address this issue, and then analyze the impact of changes in China's interprovincial and international trade patterns on the WSF from 2012 to 2017. We find that China's water stress embodied in inter-provincial trade has increased year after year, to 5606 km3 H2O-eq in 2017, exceeding 50 % of the total domestic footprint. Domestic water stress transfer is most apparent in the outsourcing of water stress from eastern coastal regions to Central and Western regions, with the top interregional supply chain paths mainly associated with the demand of processed rice and tobacco products. China has transformed into a net exporter of water stress in 2017, with water stress exports to developing countries accounting for 54 % of total exports, up from 51 % in 2012. With deepening globalization, trade between China and developing countries has boosted bilateral economic development, while also exacerbating water stress in China. In addition to agricultural cultivation, industrial products such as plastics and steel exported to meet international industries further contribute to water stress in Northern China. Further identify hotspots of water stress consumption is needed to prioritize actions to relieve regional water stress in a more effective manner, and our study can provide key information.
Collapse
Affiliation(s)
- Han Zhao
- Department of Civil Engineering, The University of Tokyo, Tokyo, Japan.
| | - T Reed Miller
- School of the Environment, Yale University, New Haven, CT, USA
| | - Naoko Ishii
- Center for Global Commons, Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Akiyuki Kawasaki
- Department of Civil Engineering, The University of Tokyo, Tokyo, Japan; Center for Global Commons, Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14159596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With the rapid development of the socio-economic system and the close connection of inter-regional trade, the physical water consumption in production and the virtual water flow associated with inter-regional trade are both have a significant impact on local water systems, especially in megacities. Beijing is the political, economic and cultural center of China, which is a megacity that has severe water scarcity. To evaluate the status-quo of local water consumption and propose the countermeasures, this study quantitatively analyzed the evolution trend of physical water consumption and the virtual water flow in Beijing. The results show that the total physical water consumption in Beijing decreased from 2.43 billion m3 (2002) to 1.98 billion m3 (2017), while the net virtual water input increased from 1.76 billion m3 (2002) to 3.09 billion m3 (2017), which was mainly embedded in agricultural and industrial products. This study also reveals the equal importance of physical water and virtual water in ensuring the regional water security and sustainable economic development. In view of poor water resource endowment, Beijing should conduct the coupled management of physical water and virtual water to alleviate the local water shortage, i.e., to receive more virtual water embedded in agricultural and industrial products, and allocate the limited local water resources to domestic use and high-benefit sectors.
Collapse
|
5
|
Liu X, Xiong R, Guo P, Nie L, Shi Q, Li W, Cui J. Virtual Water Flow Pattern in the Yellow River Basin, China: An Analysis Based on a Multiregional Input-Output Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7345. [PMID: 35742592 PMCID: PMC9224248 DOI: 10.3390/ijerph19127345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Research on the Yellow River Basin's virtual water is not only beneficial for rational water resource regulation and allocation, but it is also a crucial means of relieving the pressures of a shortage of water resources. The water stress index and pull coefficient have been introduced to calculate the implied virtual water from intraregional and interregional trade in the Yellow River Basin on the basis of a multi-regional input-output model; a systematic study of virtual water flow has been conducted. The analysis illustrated that: (1) Agriculture is the leading sector in terms of virtual water input and output among all provinces in the Yellow River Basin, which explains the high usage. Therefore, it is important to note that the agricultural sector needs to improve its water efficiency. In addition to agriculture, virtual water is mainly exported through supply companies in the upper reaches; the middle reaches mainly output services and the transportation industry, and the lower reaches mainly output to the manufacturing industry. Significant differences exist in the pull coefficients of the same sectors in different provinces (regions). The average pull coefficients of the manufacturing, mining, and construction industries are large, so it is necessary to formulate stricter water use policies. (2) The whole basin is in a state of virtual net water input, that is, throughout the region. The Henan, Shandong, Shanxi, Shaanxi, and Qinghai Provinces, which are relatively short of water, import virtual water to relieve local water pressures. However, in the Gansu Province and the Ningxia Autonomous Region, where water resources are not abundant, continuous virtual water output will exacerbate the local resource shortage. (3) The Yellow River Basin's virtual water resources have obvious geographical distribution characteristics. The cross-provincial trade volume in the downstream area is high; the virtual water trade volume in the upstream area is low, as it is in the midstream and downstream areas; the trade relationship is insufficient. The Henan and Shandong Provinces are located in the dominant flow direction of Yellow River Basin's virtual water, while Gansu and Inner Mongolia are at the major water sources. Trade exchanges between the midstream and downstream and the upstream should be strengthened. Therefore, the utilization of water resources should be planned nationwide to reduce water pressures, and policymakers should improve the performance of agricultural water use within the Yellow River Basin and change the main trade industries according to the resource advantages and water resources situation of each of them.
Collapse
Affiliation(s)
- Xiuli Liu
- Research Institute of Resource-Based Economics, Shanxi University of Finance & Economics, Taiyuan 030006, China; (X.L.); (R.X.); (L.N.); (Q.S.); (W.L.); (J.C.)
| | - Rui Xiong
- Research Institute of Resource-Based Economics, Shanxi University of Finance & Economics, Taiyuan 030006, China; (X.L.); (R.X.); (L.N.); (Q.S.); (W.L.); (J.C.)
| | - Pibin Guo
- Department of Management, Taiyuan University, Taiyuan 030032, China
| | - Lei Nie
- Research Institute of Resource-Based Economics, Shanxi University of Finance & Economics, Taiyuan 030006, China; (X.L.); (R.X.); (L.N.); (Q.S.); (W.L.); (J.C.)
| | - Qinqin Shi
- Research Institute of Resource-Based Economics, Shanxi University of Finance & Economics, Taiyuan 030006, China; (X.L.); (R.X.); (L.N.); (Q.S.); (W.L.); (J.C.)
| | - Wentao Li
- Research Institute of Resource-Based Economics, Shanxi University of Finance & Economics, Taiyuan 030006, China; (X.L.); (R.X.); (L.N.); (Q.S.); (W.L.); (J.C.)
| | - Jing Cui
- Research Institute of Resource-Based Economics, Shanxi University of Finance & Economics, Taiyuan 030006, China; (X.L.); (R.X.); (L.N.); (Q.S.); (W.L.); (J.C.)
| |
Collapse
|
6
|
Wang Y, Wu H, Li Z. Assessment of Sectoral Virtual Water Flows and Future Water Requirement in Agriculture Under SSP-RCP Scenarios: Reflections for Water Resources Management in Zhangye City. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.901873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Water scarcity is a core issue that constraints the high-quality development of arid areas in northwestern China. Zhangye is an oasis city located in the Heihe River Basin in northwestern China. It is populated with an agriculture-dominated economy and faces more and more serious water crises. Virtual water is an indicator that can measure the embodied water in the traded products, which has been widely applied for making rational policies for water resources management. In addition, clarifying water requirements in agricultural sectors under future climate change scenarios is essential to develop more appropriate adaptation strategies. From this perspective, this study aims to evaluate and compare virtual water flows among various sectors in Zhangye for the years 2012 and 2017 with a single regional input-output model and to further clarify the future water requirement tendency in agriculture during 2020–2050 under different shared socioeconomic pathways and representative concentration pathways (SSP-RCP) scenarios. The results showed that the planting sector directly contributed most of the total water consumption with the highest direct coefficient of 3307.5 m3/yuan in 2012, whereas the manufacture of food products and tobacco processing sector had the largest proportion of indirect water consumption (99%) mainly from intermediate inputs of agricultural products. Water consumption intensity of all sectors on average decreased by 22% during 2012–2017, indicating an increasing water utilization efficiency in economic industries. Household consumption also can improve water utilization efficiency as the major pathway for final consumption (86.4% in 2017). Water scarcity in Zhangye was becoming increasingly prominent since virtual water net exports were higher than local consumption, especially in the agriculture, manufacturing, and energy supply industries. Moreover, under climate change scenarios, we found the highest level of water requirement per unit area occurred in 2000, but it still had an incremental potential by 2050, especially in SSP585. The high requirement intensity and large-scale maize planting caused a rising tendency of total crop water requirement with an annual increasing rate of 8.4% from 1980 to 2050. This makes it possible to adapt to climate change through scientific management measures and technical means. We further made policy implications for adaptive management of water resources in Zhangye.
Collapse
|