1
|
Li D, Teng L, Guo K, Zhu Y, Zhang J. Achieving stable partial nitrification by exploiting lag phase of NOB recovery for selective washout. ENVIRONMENTAL RESEARCH 2025; 268:120762. [PMID: 39756781 DOI: 10.1016/j.envres.2025.120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Stable inhibition of nitrite-oxidizing bacteria (NOB) is a significant challenge in achieving partial nitrification (PN) and partial nitrification-anaerobic ammonia oxidation (PNA). Growing evidence suggested that NOB can develop resistance to suppression over time, leading to the re-enrichment of NOB within reactors. To address these issues, this study aimed to achieve stable PN by regulating SRT to selectively washout NOB during the lag phase of activity recovery following FA/FNA exposure. The effects of this new strategy on nitrifying bacteria, sludge characteristics, and microbial interspecies relationships were investigated over a 150-day trial. Under the new strategy operation, the effluent ammonia, nitrite, and nitrate concentrations were 4.72 mg/L, 51.81 mg/L, and 3.30 mg/L, respectively, at a dissolved oxygen (DO) concentration of 0.18 mg/L, with a nitrite accumulation rate (NAR) remaining above 95%. This was attributed to the increasing relative abundance of ammonia-oxidizing bacteria (AOB) (Nitrosomonas) up to 25.86% and the decreasing relative abundance of NOB (Nitrospira, Nitrobacter and Candidatus Nitrotoga) to below the detection limit (1%) during the stabilization period. Analysis of the PN sludge characteristics revealed a tendency for sludge to form loosely structured aggregates, facilitating the potential rapid start-up of the PNA biofilm system or granular sludge. These findings suggest that the new strategy is a straightforward and effective method for achieving PN.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China.
| | - Luyao Teng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China
| | - Kehuan Guo
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China
| | - Yanjun Zhu
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Xu RZ, Cao JS, Luo JY, Ni BJ, Fang F, Liu W, Wang P. Understanding nitrogen removal and N 2O emission mechanisms in an anaerobic-swing-anoxic-oxic (ASAO) continuous plug-flow system for low C/N municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177041. [PMID: 39437919 DOI: 10.1016/j.scitotenv.2024.177041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
This study aims to investigate effects of dissolved oxygen (DO) levels and aerated hydrodynamic retention time (HRT) on nitrogen removal and nitrous oxide (N2O) emissions in a novel anaerobic-swing-anoxic-oxic (ASAO) continuous plug-flow system for treating low carbon to nitrogen ratio municipal wastewater. The swing zones had varying DO levels and volumes, deciding the aerated HRT of the ASAO system. Results showed that low DO level (0.8-1.0 mg/L) and short aerated HRT led to high nitrogen removal performance (91.4 %-96.3 %) and low N2O emission factor (2.8 %). The simultaneous nitrification and denitrification (SND) in swing zones and endogenous denitrification in anoxic zones contributed to the nitrogen removal. Meanwhile, the SND and autotrophic denitrification processes were identified as the N2O sources. Low DO level enriched ammonia-oxidizing bacteria and enhanced the SND and autotrophic denitrification pathway. These findings suggest that the ASAO system is promising for reducing carbon emissions in municipal wastewater treatment.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bing-Jie Ni
- University of New South Wales, Sydney, NSW 2052, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Weijing Liu
- Jiangsu Provincial Key Laboratory of Environment Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
3
|
Wang W, Zhang X, Ma B, Zhang H, Wang Q, Song Y, Ma Y. Rapid achievement of partial nitrification process by adopting the combined strategy of anoxic starvation and free ammonia inhibition. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39258836 DOI: 10.1080/09593330.2024.2401645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Partial nitrification (PN) is a prerequisite step for the short-cut nitrogen removal process, which is crucial to provide stable nitrite accumulation for subsequent units. The present study innovatively proposed a new strategy for the rapid establishment of PN by adopting short-term anoxic starvation combined with high free ammonia inhibition. The sludge obtained from the secondary sedimentation tank of a municipal wastewater treatment plant was starved for 7 days under anoxic conditions, and then wastewater with high ammonia nitrogen (400 mg L-1) was introduced. Within 17 days, stable nitrite accumulation was achieved in the sequencing batch reactor, and the nitrite accumulation rate reached more than 95.0%. The activity of ammonia monooxygenase enzyme increased from 0.0364 ± 0.0074 to 0.1275 ± 0.0021 μg NO2--N·mg-1 protein min-1, while that of hydroxylamine oxidoreductase enzyme increased from 1.5350 ± 0.0208 to 6.3852 ± 0.0400 EU g-1 SS. The relative abundance of Nitrosomonas increased from 0.10% to 25.90%, while that of Nitrospira consistently remained below 0.04%. And the relative abundance of short-cut denitrifying bacteria, including Truepera, OLB8, and OLB13 all increased. The results proved that the short-term anoxic starvation combined with high free ammonia inhibition was an effective strategy for rapid establishment of PN.
Collapse
Affiliation(s)
- Wenxiao Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Bingbing Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Han Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Qiong Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, People's Republic of China
| |
Collapse
|
4
|
Zhuang X, Wang D, Jiang C, Wang X, Yang D, Zhang W, Wang D, Xu S. Achieving partial nitrification by sludge treatment using sulfide: Optimal conditions determination, long-term stability evaluation and microbial mechanism exploration. BIORESOURCE TECHNOLOGY 2024; 408:131207. [PMID: 39098354 DOI: 10.1016/j.biortech.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
This study proposes an innovative strategy for achieving PN in synthetic domestic wastewater by side-stream sludge treatment using sulfide as the sole control factor. By conducting controllable batch experiments and response surface analysis, optimal sulfide treatment conditions were firstly determined as 90 mg/L of sulfide, 7.5 of pH, 100 rpm of rotation and 12 h of treatment time. After treatment, half of ammonia oxidizing bacteria (AOB) activity remained, but nitrite oxidizing bacteria (NOB) activity was barely detected. Nitrite accumulation rate of long-term running PN steadily reached 83.9 % with 99.1 % of ammonia removal efficiency. Sulfide treatment increased community diversity and facilitated stability of microbiota functioning with PN phenotype, which might be sustained by the positive correlation between ammonia oxidation gene (amoA) and sulfur oxidation gene (soxB). Correspondingly, the network analysis identified the keystone microbial taxa of persistent PN microbiota as Nitrosomonas, Thauera, Truepera, Defluviimonas and Sulitalea in the later stage of long-term reactor.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danhua Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmin Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weijun Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongsheng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hang Zhou 310058, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Liu W, Li J, Lu H, Peng Y. Sponge iron strengthens the activity of anammox biofilm under low nitrogen conditions in a two-stage fixed-bed biofilm reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120194. [PMID: 38430875 DOI: 10.1016/j.jenvman.2024.120194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/09/2023] [Accepted: 01/20/2024] [Indexed: 03/05/2024]
Abstract
Strengthening the activity competitiveness of anaerobic ammonium oxidation (anammox) bacteria (AnAOB) under low nitrogen conditions is indispensable for mainstream anammox application. This study demonstrates that sponge iron addition (42.8 g/L) effectively increased apparent AnAOB activity and extracellular polymeric substance (EPS) production of low load anammox biofilms cultivated under low (influent of 60 mg N/L) and even ultra-low (influent of 10 mg N/L) nitrogen conditions. In-situ batch tests showed that after sponge iron addition the specific AnAOB activity in the low and ultra-low nitrogen systems further increased to 1.18 and 0.47 mmol/g VSS/h, respectively, with an apparent growth rate for AnAOB of 0.011 ± 0.001 d-1 and 0.004 ± 0.001 d-1, respectively. The averaged EPS concentration of anammox biofilm in both low (from 35.84 to 71.05 mg/g VSS) and ultra-low (from 44.14 to 57.59 mg/g VSS) nitrogen systems increased significantly, while a higher EPS protein/polysaccharide ratio, which was positively correlated with AnAOB activity, was observed in the low nitrogen system (3.54 ± 0.34) than that in the ultra-low nitrogen system (1.82 ± 0.10). In addition, Candidatus Brocadia was detected as dominant AnAOB in the anammox biofilm under the low (12.2 %) and ultra-low (24.7 %) nitrogen condition. Notably, the genus Streptomyces (26.3 %), capable for funge-like codenitrification, increased unexpectedly in the low nitrogen system, but not affecting the nitrogen removal performance. Therefore, using sponge iron to strengthen AnAOB activity under low nitrogen conditions is feasible, providing support for mainstream anammox applications.
Collapse
Affiliation(s)
- Wenlong Liu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
6
|
Han X, Zhang L, Yuan Y, Zhang Q, Peng Y. Anaerobic starvation realizes partial nitrification and starts anammox bacteria self-enrichment in mainstream municipal sewage treatment in a low filling ratio sequencing batch reactor. BIORESOURCE TECHNOLOGY 2023; 387:129505. [PMID: 37468012 DOI: 10.1016/j.biortech.2023.129505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The initiating and stable preservation of partial nitrification (PN) and achievement of anammox bacteria self-enrichment in domestic sewage is a purposeful subject. In this article, an originality tactics of anaerobic starvation for 100 days was adopted for rapidly achieving PN in actual wastewater, the nitrite accumulation rate (NAR) improved from 4.95% to 81.73% in 18 days. After anaerobic starvation was stopped, the stable PN effect furnished enough stroma for the growth of anammox bacteria. The abundance of Candidatus Brocadia grew from 0% to 0.42% in floc sludge and 0.43% in blank biofilm, which promoted nitrogen removal effect. Anaerobic starvation continuing 74 days generated further decrease in the abundance of Nitrobacter and Nitrospira of nitrite-oxidizing bacteria (NOB), indicating that anaerobic starvation can restore the destroyed partial nitrification. In conclusion, this article furnished a low-cost method for achieving anammox bacteria self-enrichment in mainstream municipal wastewater in 10% filling ratio without chemicals addition.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Wen ZH, Zhang SS, Zhao P, Hang ZY, He ZW, Yu HQ, Li ZH. Roles of high/low nucleic acid bacteria in flocs and probing their dynamic migrations with respirogram. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165108. [PMID: 37356771 DOI: 10.1016/j.scitotenv.2023.165108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Bacterial migration is crucial for the stability of activated sludge but rarely reported. The static distribution was explored by changes in bacteria concentration with extracellular polymeric substances (EPS) extractions. Next, denitrification and aeration were conducted as normal running conditions for examining the bacterial migration between floc-attached and dispersed growth. Above observations were further explored by conducting copper ion (Cu2+) shock as an extreme running condition. After extracting EPS, low nucleic acid (LNA) bacteria migrated from the sludge to the supernatant primarily, and high nucleic acid (HNA) bacteria remained in the residual sludge, suggesting that HNA bacteria mainly distributed inside the sludge while LNA bacteria outside the sludge. During the denitrification process, LNA bacteria migrated out of flocs, which increased by 6.94 × 106 events/mL in the supernatant. During the feast phase of aeration, LNA bacteria grew attached to flocs, causing the increased flocs diameter from 45.60 to 47.40 μm. During the following aerobic famine phase, LNA bacteria grew dispersedly, but HNA bacteria remained unchanged. However, a further severe famine phase drove HNA bacteria to be dispersed, breaking flocs with the decreased diameter from 48.10 to 46.50 μm. When the Cu2+ shock was employed, LNA and HNA bacteria increased but the LNA/HNA ratio decreased in the supernatant, indicating more HNA bacteria migrating to the dispersed phase. From a structural perspective, HNA bacteria distributed inside the sludge and functioned as the backbone of flocs, undertaking the maintenance of flocs stability primarily; while LNA bacteria distributed outside the sludge and functioned as filling materials, having a secondary influence on flocs stability. These processes were also probed by respirogram exactly, correlating the system-scale measurement and microscale migrations and providing an early warning signal under abnormal circumstances. The processed HNA-backbone theory is promising for regulating the stability of activated sludge based on bacterial migrations.
Collapse
Affiliation(s)
- Zheng-Hong Wen
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuang-Shuang Zhang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pian Zhao
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhen-Yu Hang
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment, and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Xi'an Key Laboratory of Intelligent Equipment Technology for Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
8
|
Cui H, Zhang L, Zhang Q, Li X, Peng Y, Wang C. Enhancing nitrogen removal of carbon-limited municipal wastewater in step-feed biofilm batch reactor through integration of anammox. BIORESOURCE TECHNOLOGY 2023; 381:129091. [PMID: 37105262 DOI: 10.1016/j.biortech.2023.129091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
The biological nitrogen removal of municipal wastewater was successfully improved by integrating anammox in a step-feed sequencing biofilm batch reactor. Despite fluctuating influent carbon to nitrogen ratio (1.9-5.1) and decreasing temperature (24.1-16.3 ℃), nitrogen removal efficiency of 95.9 ± 1.4 % and nitrogen removal rate of 0.23 ± 0.02 kg N/(m3·d) were successfully maintained without requirement of external carbon sources. The advanced removal performance was mainly attributed to the enhanced anammox. Anammox bacteria presented a high relative abundance (42.9% in biofilms, 1.5% in flocs) and anammox activity was as high as 5.42 ± 0.12 mg N/(g volatile suspended solids·h). Further analysis suggested that flexible control of influent organic and ammonium through step-feeding could provide multiple substrate supply for anammox reaction, potentially resulting in stable combination of anammox with hybrid-nitrite-shunt processes. Overall, this study provides a promising anammox-related application with simple-control step-feed strategy for enhanced and stable nitrogen removal from carbon-limited municipal wastewater.
Collapse
Affiliation(s)
- Huihui Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co., Ltd., Units 01 and 04, 5/F, Xingguang Yingjing Commercial Center, 117 Shuiyin Road, Yuexiu District, Guangzhou, PR China
| |
Collapse
|
9
|
Wei Z, Li D, Li S, Hao T, Zeng H, Zhang J. Improving anammox performance by limited filamentous bulking for wastewater treatment with organic stress. BIORESOURCE TECHNOLOGY 2023; 369:128506. [PMID: 36535612 DOI: 10.1016/j.biortech.2022.128506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, the filamentous bulking was demonstrated to improve anammox capability and anammox bacteria (AnAOB) population density under organic stress. The selective heterotrophic bacteria (HB) washout that involved in shear detachment, enmeshment and biomass washout was triggered. The microbial spatial distribution and granular detachment properties revealed that the filamentous bulking transferred the "location advantage" of HB from granules interior to surface, and endowed granular surface low shear tolerance for shear detachment, ultimately resulted in selective HB detachment. The detached filaments-mediated enmeshment provided additional selective pressure for free HB-flocs, eventually achieving the retention time differentiation between AnAOB (34 - 141 days) and HB (3 - 15 days), and a high anammox population density. Controlling dissolved oxygen level was crucial for regulating sludge bulking. Collectively, the filamentous bulking was developed as an effective anti-organic stress strategy to broaden the application of granular anammox process in actual wastewater treatment.
Collapse
Affiliation(s)
- Ziqing Wei
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Shuai Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Tongyao Hao
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
10
|
Xu P, Xie Z, Shi L, Yan X, Fu Z, Ma J, Zhang W, Wang H, Xu B, He Q. Distinct responses of aerobic granular sludge sequencing batch reactors to nitrogen and phosphorus deficient conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155369. [PMID: 35461925 DOI: 10.1016/j.scitotenv.2022.155369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The nutrients availability determines efficiency of biological treatment systems, along with the structure and metabolism of microbiota. Herein nutrients deficiencies on aerobic granular sludge were comparatively evaluated, treating wastewater with mass ratios of chemical oxygen demand : nitrogen : phosphorus being 200:20:4, 200:2:4, and 200:20:0.4 (deemed as nutrient-balanced, nitrogen-deficient, and phosphorus-deficient), respectively. Results revealed that both nitrogen and phosphorus deficiencies significantly raised the effluent qualities especially nitrogen removal. However, nitrogen deficiency aroused considerable growth of filamentous bacteria, while granules kept compact structure under phosphorus deficient condition. Extracellular polymeric substances (EPS) also varied in contents and structures in response to different wastewaters. Microbial community structure analysis demonstrated that nitrogen deficiency led to lower richness and higher diversity, while the reverse was observed under phosphorus deficient condition. Nitrogen deficiency mainly induced decrease of nitrifying bacteria, while similarly phosphorus deficiency led to loss of phosphorus accumulating organisms. Dramatic enrichment Candidatus_Competibacter and filamentous Thiothrix were found under nutrients deficiencies, in which the latter explained and indicated filamentous bulking potential especially under nitrogen limited condition. Bacterial metabolism patterns verified the functions of microbial community responding to nutrients via PICRUSt2 prediction mainly by up-regulating cell motility, and cellular processes and signaling. This study could aid understanding of long-term stability of aerobic granular sludge for low-strength wastewater treatment.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhiyi Xie
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Liangsheng Shi
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China
| | - Xiaohui Yan
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zhidong Fu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Jingwei Ma
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Baokun Xu
- Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China; Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China; Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Li C, Maqbool T, Kang H, Zhang Z. In-Situ Sludge Reduction in Membrane-Controlled Anoxic-Oxic-Anoxic Bioreactor: Performance and Mechanism. MEMBRANES 2022; 12:membranes12070659. [PMID: 35877863 PMCID: PMC9321052 DOI: 10.3390/membranes12070659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023]
Abstract
Conventional and advanced biological wastewater treatment systems generate excess sludge, which causes socio-economic and environmental issues. This study investigated the performance of membrane-controlled anoxic-oxic-anoxic (AOA) bioreactors for in-situ sludge reduction compared to the conventional anoxic-oxic-oxic membrane bioreactor (MBRcontrol). The membrane units in the AOA bioreactors were operated as anoxic reactors at lower sludge recirculation rates to achieve hydrolysis of extracellular polymeric substances (EPS) and extensive endogenous respiration. Compared to MBRcontrol, the AOA bioreactors operated with 90%, and 80% recirculation rates reduced the sludge growth up to 19% and 30%, respectively. Protein-like components were enriched in AOA bioreactors while fulvic-like components were dominant in MBRcontrol. The growth of Dechloromonas and Zoogloea genra was promoted in AOA bioreactors and thus sludge reduction was facilitated. Metagenomics analysis uncovered that AOA bioreactors exhibited higher proportions of key genes encoding enzymes involved in the glycolysis and denitrification processes, which contributed to the utilization of carbon sources and nitrogen consumption and thus sludge reduction.
Collapse
Affiliation(s)
- Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongyu Kang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (C.L.); (T.M.); (H.K.)
- Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|