1
|
Ouyang B, Yang C, Lv Z, Chen B, Tong L, Shi J. Recent advances in environmental antibiotic resistance genes detection and research focus: From genes to ecosystems. ENVIRONMENT INTERNATIONAL 2024; 191:108989. [PMID: 39241334 DOI: 10.1016/j.envint.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance genes (ARGs) persistence and potential harm have become more widely recognized in the environment due to its fast-paced research. However, the bibliometric review on the detection, research hotspot, and development trend of environmental ARGs has not been widely conducted. It is essential to provide a comprehensive overview of the last 30 years of research on environmental ARGs to clarify the changes in the research landscape and ascertain future prospects. This study presents a visualized analysis of data from the Web of Science to enhance our understanding of ARGs. The findings indicate that solid-phase extraction provides a reliable method for extracting ARG. Technological advancements in commercial kits and microfluidics have facilitated the efficacy of ARGs extraction with significantly reducing processing times. PCR and its derivatives, DNA sequencing, and multi-omics technology are the prevalent methodologies for ARGs detection, enabling the expansion of ARG research from individual strains to more intricate microbial communities in the environment. Furthermore, due to the development of combination, hybridization and mass spectrometer technologies, considerable advancements have been achieved in terms of sensitivity and accuracy as well as lowering the cost of ARGs detection. Currently, high-frequency terms such as "Antibiotic Resistance, Antibiotics, and Metagenomics" are the center of attention for study in this area. Prominent topics include the investigation of anthropogenic impacts on environmental resistance, as well as the dynamics of migration, dissemination, and adaptation of environmental ARGs, etc. The research on environmental ARGs has made significant advancements in the fields of "Microbiology" and "Biotechnology Applied Microbiology". Over the past decade, there has been a notable increase in the fields of "Environmental Sciences Ecology" and "Engineering" with a similar growth trend observed in "Water Resources". These three domains are expected to continue driving extensive study within the realm of environmental ARGs.
Collapse
Affiliation(s)
- Bowei Ouyang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Cong Yang
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Ziyue Lv
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Lei Tong
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China.
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, China; School of Environmental Studies, China University of Geosciences, Wuhan, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China University of Geosciences, Wuhan, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Habibi N, Uddin S, Behbehani M, Mustafa AS, Al-Fouzan W, Al-Sarawi HA, Safar H, Alatar F, Al Sawan RMZ. Aerosol-Mediated Spread of Antibiotic Resistance Genes: Biomonitoring Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:983. [PMID: 39200594 PMCID: PMC11353316 DOI: 10.3390/ijerph21080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | - Wadha Al-Fouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | | | - Hussain Safar
- OMICS-RU, Health Science Centre, Kuwait University, Jabriya 13060, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait
| | - Rima M. Z. Al Sawan
- Neonatology Department, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
| |
Collapse
|
3
|
Zhu DM, Yan YS, Wang H, Zhong Y, Inam, Gao YH, Li GM, Mu GD, Dong HF, Li Y, Liu DK, Ma HX, Kong LC. Transmission of human-pet antibiotic resistance via aerosols in pet hospitals of Changchun. One Health 2024; 18:100765. [PMID: 38855194 PMCID: PMC11157275 DOI: 10.1016/j.onehlt.2024.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In recent years, aerosols have been recognized as a prominent medium for the transmission of antibiotic-resistant bacteria and genes. Among these, particles with a particle size of 2 μm (PM2.5) can directly penetrate the alveoli. However, the presence of antibiotic-resistant genes in aerosols from pet hospitals and the potential risks posed by antibiotic-resistant bacteria in these aerosols to humans and animals need to be investigated. In this study, cefotaxime-resistant bacteria were collected from 5 representative pet hospitals in Changchun using a Six-Stage Andersen Cascade Impactor. The distribution of bacteria in each stage was analyzed, and bacteria from stage 5 and 6 were isolated and identified. Minimal inhibitory concentrations of isolates against 12 antimicrobials were determined using broth microdilution method. Quantitative Polymerase Chain Reaction was employed to detect resistance genes and mobile genetic elements that could facilitate resistance spread. The results indicated that ARBs were enriched in stage 5 (1.1-2.1 μm) and stage 3 (3.3-4.7 μm) of the sampler. A total of 159 isolates were collected from stage 5 and 6. Among these isolates, the genera Enterococcus spp. (51%), Staphylococcus spp. (19%), and Bacillus spp. (14%) were the most prevalent. The isolates exhibited the highest resistance to tetracycline and the lowest resistance to cefquinome. Furthermore, 56 (73%) isolates were multidrug-resistant. Quantitative PCR revealed the expression of 165 genes in these isolates, with mobile genetic elements showing the highest expression levels. In conclusion, PM2.5 from pet hospitals harbor a significant number of antibiotic-resistant bacteria and carry mobile genetic elements, posing a potential risk for alveolar infections and the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Dao Mi Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ya Song Yan
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Hao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Inam
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Yun Hang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Gong Mei Li
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Guo Dong Mu
- Jilin Provincial Animal Disease Prevention and Control Center, Jilin Animal Husbandry Building, Xi'an Road No. 4510, Changchun, PR China
| | - Hui Feng Dong
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Yuan Li
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Ding Kuo Liu
- Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, No.27, Shengda Second Branch Road, Wangwenzhuang Industrial Park, Xiqing District, Tianjin 300383, PR China
| | - Hong Xia Ma
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| | - Ling Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
- The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, PR China
| |
Collapse
|
4
|
Agarwal V, Meier B, Schreiner C, Figi R, Tao Y, Wang J. Airborne antibiotic and metal resistance genes - A neglected potential risk at e-waste recycling facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170991. [PMID: 38365028 DOI: 10.1016/j.scitotenv.2024.170991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Heavy metal-rich environments can promote the selection of metal-resistance genes (MRGs) in bacteria, often leading to the simultaneous selection of antibiotic-resistance genes (ARGs) through a process known as co-selection. To comprehensively evaluate the biological pollutants at electronic-waste (e-waste) recycling facilities, air, soil, and river samples were collected at four distinct Swiss e-waste recycling facilities and analyzed for ARGs, MRGs, mobile genetic elements (MGEs), endotoxins, and bacterial species, with correlations drawn to heavy metal occurrence. To our knowledge, the present work marks the first attempt to quantify these bio-pollutants in the air of e-waste recycling facilities, that might pose a significant health risk to workers. Although ARG and MRG's profiles varied among the different sample types, intl1 consistently exhibited high relative abundance rates, identifying it as the predominant MGE across all sample types and facilities. These findings underscore its pivol role in driving diverse bacterial adaptations to extreme heavy metal exposure by selection and dissemination of ARGs and MRGs. All air samples exhibited consistent profiles of ARGs and MRGs, with blaTEM emerging as the predominant ARG, alongside pbrT and nccA as the most prevalent MRGs. However, one facility, engaged in batteries recycling and characterized by exceptionally high concentrations of heavy metals, showcased a more diverse resistance gene profile, suggesting that bacteria in this environment required more complex resistance mechanisms to cope with extreme metal exposure. Furthermore, this study unveiled a strong association between gram-negative bacteria and ARGs and less with MRGs. Overall, this research emphasizes the critical importance of studying biological pollutants in the air of e-waste recycling facilities to inform robust safety measures and mitigate the risk of resistance gene dissemination among workers. These findings establish a solid foundation for further investigations into the complex interplay among heavy metal exposure, bacterial adaptation, and resistance patterns in such distinctive ecosystems.
Collapse
Affiliation(s)
- V Agarwal
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - B Meier
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland
| | - C Schreiner
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - R Figi
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Y Tao
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - J Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8983, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland.
| |
Collapse
|
5
|
Agarwal V, Yue Y, Zhang X, Feng X, Tao Y, Wang J. Spatial and temporal distribution of endotoxins, antibiotic resistance genes and mobile genetic elements in the air of a dairy farm in Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122404. [PMID: 37625772 DOI: 10.1016/j.envpol.2023.122404] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Antimicrobial resistance (AMR) is a serious issue that is continuously growing and spreading, leading to a dwindling number of effective treatments for infections that were easily treatable with antibiotics in the past. Animal farms are a major hotspot for AMR, where antimicrobials are often overused, misused, and abused, in addition to overcrowding of animals. In this study, we investigated the risk of AMR transmission from a farm to nearby residential areas by examining the overall occurrence of endotoxins, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the air of a cattle farm. We assessed various factors, including the season and year, day and nighttime, and different locations within the farm building and its vicinity. The most abundant ARGs detected were tetW, aadA1, and sul2, genes that encode for resistances towards antibiotics commonly used in veterinary medicine. While there was a clear concentration gradient for endotoxin from the middle of the farm building to the outside areas, the abundance of ARGs and MGEs was relatively uniform among all locations within the farm and its vicinity. This suggests that endotoxins preferentially accumulated in the coarse particle fraction, which deposited quickly, as opposed to the ARGs and MGEs, which might concentrate in the fine particle fraction and remain longer in the aerosol phase. The occurrence of the same genes found in the air samples and in the manure indicated that ARGs and MGEs in the air mostly originated from the cows, continuously being released from the manure to the air. Although our atmospheric dispersion model indicated a relatively low risk for nearby residential areas, farm workers might be at greater risk of getting infected with resistant bacteria and experiencing overall respiratory tract issues due to continuous exposure to elevated concentrations of endotoxins, ARGs and MGEs in the air of the farm.
Collapse
Affiliation(s)
- V Agarwal
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Yue
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Zhang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Feng
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Tao
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - J Wang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| |
Collapse
|
6
|
Chen N, Gong C, Zhao H. Dual-channel fluorescence detection of antibiotic resistance genes based on DNA-templated silver nanoclusters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163559. [PMID: 37080301 DOI: 10.1016/j.scitotenv.2023.163559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The aqueous environment is an ideal site for the generation and transmission of antibiotic resistance genes (ARGs), and has become a sink for multiple ARGs. Detection of multiple ARGs in one-pot by a simple method is essential to control the spread of antibiotic resistance. Herein, we developed a novel fluorescence sensing strategy based on chameleon DNA-templated silver nanoclusters (AgNCs) to achieve simultaneous detection of two ARGs (tet-A and sul-1). A DNA fluorescent probe with AgNCs stabilized at both termini and another DNA probe carried enhancer sequences were designed. The hybridization of the target ARGs and probes can form an infinitely extended linear DNA structure containing multi-branched AgNCs beacons, and the chameleon AgNCs approach the fluorescence enhancer sequence, thereby realizing the transduction and amplification of green and red fluorescence signals. Through this strategy, we successfully achieved highly specific detection of two ARGs with the LOD of 0.45 nM for tet-A and 0.32 nM for sul-1. In addition, the strategy still had good applicability in the detection of actual samples containing complex components. In this study, fluorescent DNA-AgNCs were applied to the rapid, enzyme-free and reliable detection of ARGs for the first time. The excellent performance of the simultaneous detection of two ARGs displayed that this method can be used to simultaneously analyze different types of ARGs, indicating its great potential in rapid screening and quantitative detection of ARGs in various environmental medias.
Collapse
Affiliation(s)
- Nahong Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Changbao Gong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Ma L, Yabo SD, Lu L, Jiang J, Meng F, Qi H. Seasonal variation characteristics of inhalable bacteria in bioaerosols and antibiotic resistance genes in Harbin. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130597. [PMID: 36584645 DOI: 10.1016/j.jhazmat.2022.130597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/27/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Bioaerosols have received extensive attention due to their impact on climate, ecological environment, and human health. This study aimed to reveal the driving factors that structure bacterial community composition and the transmission route of antibiotic resistance genes (ARGs) in PM2.5. The results showed that the bacterial concentration in spring (8.76 × 105 copies/m3) was significantly higher than that in summer (1.03 × 105 copies/m3) and winter (4.74 × 104 copies/m3). Low temperatures and air pollution in winter negatively affected bacterial concentrations. Keystone taxa were identified by network analysis. Although about 50 % of the keystone taxa had low relative abundances, the strong impact of complex interactions between keystone taxa and other taxa on bacterial community structure deserved attention. The bacterial community assembly was dominated by stochastic processes (79.3 %). Interactions between bacteria and environmental filtering together affected bacterial community composition. Vertical gene transfer played an important role in the transmission of airborne ARGs. Given the potential integration and expression of ARGs in recipients, the human exposure risk due to high concentrations of ARGs and mobile genetic elements cannot be ignored. This study highlights human exposure to inhalable bacterial pathogens and ARGs in urban areas.
Collapse
Affiliation(s)
- Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Stephen Dauda Yabo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinpan Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fan Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
8
|
Sun S, Jiang Q, Zhang W, Tian L, Li T, Zheng L, Gao Y, Zeng X, Zhou L. Efficient adsorption of tetracycline in aquatic system by thermally-treated sediment. ENVIRONMENTAL RESEARCH 2022; 214:113779. [PMID: 35780855 DOI: 10.1016/j.envres.2022.113779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The disposal of dredged sediment is a considerable challenge for environmental protection and resource utilization. In this study, the dredged sediment was thermally-treated to prepare as adsorbent and utilized for tetracycline adsorption. Sediments based adsorbents under different pyrolysis temperature and atmosphere (N2 and limited oxygen) were obtained and 600 °C and N2 atmosphere (600AN) exhibited maximum TC adsorption capacity (15.45 mg/g). SEM, N2 adsorption-desorption isotherm, XRD, FTIR and XPS analysis suggested larger pore volume, relatively higher surface area, effective pore size distribution and abundant surface functional groups were the main reasons. Moreover, the influence of key adsorption parameters, including adsorbent dosage, initial pH, coexisting ions, ionic strength, contact time, initial TC concentration and ambient temperature had also been investigated. Results revealed that TC adsorption by 600AN were more consistent with pseudo-second order kinetic and Freundlich isothermal models. Combined with characterization results, which reasonably inferred that the adsorption mechanisms of 600AN were mainly involved pore-filling effect, hydrogen bonding interaction and π-π EDA interaction. This work has provided a low-cost, high efficiency and promising method for the dredged sediment reduction and resource recovery.
Collapse
Affiliation(s)
- Shiquan Sun
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Qian Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Wei Zhang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Liu Tian
- School of Civil Engineering, Chongqing University, No. 83 Shabei Street, Shapingba District, Chongqing, 400044, China
| | - Tian Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Yu Gao
- Shanxi CBM Exploration & Development Branch, PetroChina Huabei Oilfield Company, Shanxi, 048000, China
| | - Xin Zeng
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Lean Zhou
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| |
Collapse
|
9
|
Lee G, Yoo K. A review of the emergence of antibiotic resistance in bioaerosols and its monitoring methods. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:799-827. [PMID: 35694630 PMCID: PMC9169023 DOI: 10.1007/s11157-022-09622-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/30/2022] [Indexed: 04/18/2023]
Abstract
Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions.
Collapse
Affiliation(s)
- Gihan Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112 South Korea
- Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112 South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112 South Korea
| |
Collapse
|