1
|
Son JY, Heo S, Byun G, Foo D, Song Y, Lewis BM, Stewart R, Choi HM, Bell ML. A systematic review of animal feeding operations including concentrated animal feeding operations (CAFOs) for exposure, health outcomes, and environmental justice. ENVIRONMENTAL RESEARCH 2024; 259:119550. [PMID: 38964578 PMCID: PMC11365793 DOI: 10.1016/j.envres.2024.119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Despite growing literature on animal feeding operations (AFOs) including concentrated animal feeding operations (CAFOs), research on disproportionate exposure and associated health burden is relatively limited and shows inconclusive findings. OBJECTIVE We systematically reviewed previous literature on AFOs/CAFOs, focusing on exposure assessment, associated health outcomes, and variables related to environmental justice (EJ) and potentially vulnerable populations. METHODS We conducted a systematic search of databases (MEDLINE/PubMed and Web of Science) and performed citation screening. Screening of titles, abstracts, and full-text articles and data extraction were performed independently by pairs of reviewers. We summarized information for each study (i.e., study location, study period, study population, study type, study design, statistical methods, and adjusted variables (if health association was examined), and main findings), AFO/CAFO characteristics and exposure assessment (i.e., animal type, data source, measure of exposure, and exposure assessment), health outcomes or symptoms (if health association was examined), and information related to EJ and potentially vulnerable populations (in relation to exposure and/or health associations, vulnerable populations considered, related variables, and main findings in relation to EJ and vulnerable populations). RESULTS After initial screening of 10,963 papers, we identified 76 eligible studies. This review found that a relatively small number of studies (20 studies) investigated EJ and vulnerability issues related to AFOs/CAFOs exposure and/or associated health outcomes (e.g., respiratory diseases/symptoms, infections). We found differences in findings across studies, populations, the metrics used for AFO/CAFO exposure assessment, and variables related to EJ and vulnerability. The most commonly used metric for AFO/CAFO exposure assessment was presence of or proximity to facilities or animals. The most investigated variables related to disparities were race/ethnicity and socioeconomic status. CONCLUSION Findings from this review provide suggestive evidence that disparities exist with some subpopulations having higher exposure and/or health response in relation to AFO/CAFO exposure, although results varied across studies.
Collapse
Affiliation(s)
- Ji-Young Son
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Seulkee Heo
- School of the Environment, Yale University, New Haven, CT, USA
| | - Garam Byun
- School of the Environment, Yale University, New Haven, CT, USA
| | - Damien Foo
- School of the Environment, Yale University, New Haven, CT, USA
| | - Yimeng Song
- School of the Environment, Yale University, New Haven, CT, USA
| | - Brandon M Lewis
- School of the Environment, Yale University, New Haven, CT, USA
| | - Rory Stewart
- School of the Environment, Yale University, New Haven, CT, USA
| | | | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA; School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Qin H, Chen Y, Wu Y, Xu H, Zhang L. Global prevalence of Cryptosporidium andersoni in dairy cattle: A systematic review and meta-analysis. Acta Trop 2024; 260:107427. [PMID: 39393480 DOI: 10.1016/j.actatropica.2024.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Cryptosporidium spp. are apicomplexan parasites commonly found in the gastrointestinal tracts of humans and in a wide range of animals. Infection is prevalent in dairy cattle and results in diarrhea and increased mortality with significant production losses. Cryptosporidium andersoni is commonly seen in asymptomatic adult cattle and has been associated with gastritis, reduced milk yield, and poor weight gain. However, a meta-analysis of C. andersoni infection in dairy cattle globally has not yet been published. We searched databases for studies on the global prevalence of C. andersoni infection in dairy cattle published from January 1, 2000, to December 31, 2022. The prevalence of C. andersoni infection in dairy cattle was estimated using a random effects model. In total, 86 publications from 30 countries were included in the final quantitative analysis. The global prevalence of C. andersoni in dairy cattle was 4.7 % (95 % confidence interval [CI]: 4.5-4.9 %, 2,554/54,627). European dairy cattle had the highest rate of C. andersoni infection at 8.8 % (961/10,944). A univariate meta-regression analysis indicated that the age of cattle (P = 0.002) and sample collection year (P = 0.025) might be sources of heterogeneity. This systematic review suggests that globally, dairy cattle exhibit a low level of C. andersoni infection; however, the geographical distribution of infection is extensive. C. andersoni mainly infects the stomach of cattle and causes no obvious clinical symptoms after infection but is thought to be responsible for reduced milk production. Therefore, subclinical Cryptosporidium infection in dairy cattle is easily overlooked. Cattle with subclinical infections can produce feces containing oocysts that are inadvertently not safely handled, which can then infect healthy dairy cattle and even cause Cryptosporidium infection in dairy cattle breeders. Therefore, prevention of C. andersoni transmission in asymptomatic cattle is an important issue that should not be neglected.
Collapse
Affiliation(s)
- Huikai Qin
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Yayun Wu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Huiyan Xu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
3
|
Son JY, Bell ML. Disparities in exposure to concentrated animal feeding operations (CAFOs) and risk of adverse birth outcomes in Pennsylvania, USA. Heliyon 2024; 10:e34985. [PMID: 39145018 PMCID: PMC11320432 DOI: 10.1016/j.heliyon.2024.e34985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Background Previous studies have linked exposure to concentrated animal feeding operations (CAFOs) with various health outcomes. However, relatively few studies evaluated the impacts of CAFOs on adverse birth outcomes, despite significant public health concerns regarding maternal and child health. Objectives This cross-sectional study investigated the risk of adverse birth outcomes associated with CAFOs exposure and evaluated disparities in exposure to CAFOs and associated health outcomes. Methods We obtained individual-level birth records from 2003 to 2020 from the Pennsylvania Department of Health. We considered two adverse birth outcomes: (1) preterm birth (PTB); and (2) low birth weight (LBW). Exposure was considered as a binary indicator (presence or absence of CAFO) and as categories based on level of exposure. Logistic regression was applied to estimate the association between CAFOs exposure and adverse birth outcomes. Models were adjusted for infant's sex, maternal demographics (age, race/ethnicity, education), prenatal BMI, prenatal care, smoking status, marital status, plurality, WIC status, and urban/rural indicator. We examined both disparities in exposure and in health response. Results Presence of CAFOs was associated with higher risk of PTB, with an increasing trend with higher levels of CAFOs exposure. Compared to the no CAFO exposure group, the odds ratios for PTB were 1.022 (95 % confidence interval 1.003, 1.043), 1.066 (1.034, 1.100), 1.069 (1.042, 1.097) for low, medium, and high CAFOs exposure groups, respectively. Some maternal characteristics were associated with a higher CAFO-related risk of PTB. Similar associations were observed for LBW for some characteristics such as mother's race/ethnicity, education, WIC status, and urbanicity, although some findings were not statistically significant. Conclusions Our findings suggest that presence of CAFOs increases risk of preterm birth. Our results indicate that some maternal characteristics may be associated with higher risk of CAFO-related PTB or LBW. This study can inform future research on disparities in CAFO exposure and associated health burden.
Collapse
Affiliation(s)
- Ji-Young Son
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Michelle L. Bell
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Son JY, Bell ML. Concentrated animal feeding operations (CAFOs) in relation to environmental justice related variables in Wisconsin, United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:416-423. [PMID: 37689742 DOI: 10.1038/s41370-023-00598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The growth of concentrated animal feeding operations (CAFOs) has caused significant environmental detriments and raised concerns regarding environmental justice with CAFOs exposure. OBJECTIVE This study examined environmental disparities in exposure to CAFOs with several environmental justice related variables and considered exposure intensity. METHODS We obtained data on permitted CAFOs (July 2021) from the Wisconsin Department of Natural Resources. We used Census tract level variables from the 2010 Census to evaluate environmental disparities by environmental justice related variables (i.e., percentages of Non-Hispanic White, Non-Hispanic Black, or Hispanic; percentage living below the poverty level; median annual household income; income inequality (Gini index); percentage with education less than high school diploma; racial isolation (RI) for Non-Hispanic Black; and educational isolation (EI) for population without a college degree). We assessed exposure to CAFOs as the sum of animal units (AUs) within each Census tract and investigated exposure disparities by comparing distributions of environmental justice related variables based on CAFO status (i.e., never, expired, or current) and Census tract-level CAFOs exposure intensity categories (i.e., from low exposure (quartile 1) to high exposure (quartile 4)). RESULTS CAFOs in Wisconsin were generally located in areas with lower percentages of racial minority persons and high SES communities; however, within the areas with current CAFO exposure, areas with high CAFOs exposure intensity had higher percentages of non-Hispanic Black and Hispanic, and lower percentages of non-Hispanic White populations compared to areas with low CAFOs exposure. IMPACT STATEMENT This study compared distributions of CAFO exposure and multiple environmental justice related variables and considered exposure intensity based on animal units for CAFOs exposure metric. Although CAFOs in Wisconsin were generally located in areas with lower percentages of racial/ethnic minority subpopulations and high SES communities, we found complex disparities with higher exposure for disadvantaged communities within areas with CAFOs. This work adds to the existing evidence that some populations such as racial/ethnic minority populations may face disproportionate burdens from CAFOs.
Collapse
Affiliation(s)
- Ji-Young Son
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
5
|
Ayala-Ramirez M, MacNell N, McNamee LE, McGrath JA, Akhtari FS, Curry MD, Dunnon AK, Fessler MB, Garantziotis S, Parks CG, Fargo DC, Schmitt CP, Motsinger-Reif AA, Hall JE, Miller FW, Schurman SH. Association of distance to swine concentrated animal feeding operations with immune-mediated diseases: An exploratory gene-environment study. ENVIRONMENT INTERNATIONAL 2023; 171:107687. [PMID: 36527873 PMCID: PMC10962257 DOI: 10.1016/j.envint.2022.107687] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Concentrated animal feeding operations (CAFOs) are a source of environmental pollution and have been associated with a variety of health outcomes. Immune-mediated diseases (IMD) are characterized by dysregulation of the normal immune response and, while they may be affected by gene and environmental factors, their association with living in proximity to a CAFO is unknown. OBJECTIVES We explored gene, environment, and gene-environment (GxE) relationships between IMD, CAFOs, and single nucleotide polymorphisms (SNPs) of prototypical xenobiotic response genes AHR, ARNT, and AHRR and prototypical immune response gene PTPN22. METHODS The exposure analysis cohort consisted of 6,464 participants who completed the Personalized Environment and Genes Study Health and Exposure Survey and a subset of 1,541 participants who were genotyped. We assessed the association between participants' residential proximity to a CAFO in gene, environment, and GxE models. We recombined individual associations in a transethnic model using METAL meta-analysis. RESULTS In White participants, ARNT SNP rs11204735 was associated with autoimmune diseases and rheumatoid arthritis (RA), and ARNT SNP rs1889740 was associated with RA. In a transethnic genetic analysis, ARNT SNPs rs11204735 and rs1889740 and PTPN22 SNP rs2476601 were associated with autoimmune diseases and RA. In participants living closer than one mile to a CAFO, the log-distance to a CAFO was associated with autoimmune diseases and RA. In a GxE interaction model, White participants with ARNT SNPs rs11204735 and rs1889740 living closer than eight miles to a CAFO had increased odds of RA and autoimmune diseases, respectively. The transethnic model revealed similar GxE interactions. CONCLUSIONS Our results suggest increased risk of autoimmune diseases and RA in those living in proximity to a CAFO and a potential role of the AHR-ARNT pathway in conferring risk. We also report the first association of ARNT SNPs rs11204735 and rs1889740 with RA. Our findings, if confirmed, could allow for novel genetically-targeted or other preventive approaches for certain IMD.
Collapse
Affiliation(s)
- Montserrat Ayala-Ramirez
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Nathaniel MacNell
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Lucy E McNamee
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - John A McGrath
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Matthew D Curry
- Social and Scientific Systems, 505 Emperor Blvd Suite 400, Durham, NC 27703, USA.
| | - Askia K Dunnon
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop D2-01, Durham, NC 27709, USA.
| | - Stavros Garantziotis
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, BG 109 RM 109 MSC CU-01, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop A3-05, Durham, NC 27709, USA.
| | - David C Fargo
- Office of Scientific Computing, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop B3-01, Durham, NC 27709, USA.
| | - Charles P Schmitt
- Office of Data Science, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Mail Drop K2-02, Durham, NC 27709, USA.
| | - Alison A Motsinger-Reif
- PEGS Co-PI, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, RTP 101, Research Triangle Park, NC 27709, USA.
| | - Janet E Hall
- PEGS Co-PI, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, BG 101 RM A222 MSC A2-03. 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Frederick W Miller
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, RTP 101 David P. Rall Building, Research Triangle Park, NC 27709, USA.
| | - Shepherd H Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Holcomb DA, Quist AJL, Engel LS. Exposure to industrial hog and poultry operations and urinary tract infections in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158749. [PMID: 36108846 PMCID: PMC9613609 DOI: 10.1016/j.scitotenv.2022.158749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
An increasing share of urinary tract infections (UTIs) are caused by extraintestinal pathogenic Escherichia coli (ExPEC) lineages that have also been identified in poultry and hogs with high genetic similarity to human clinical isolates. We investigated industrial food animal production as a source of uropathogen transmission by examining relationships of hog and poultry density with emergency department (ED) visits for UTIs in North Carolina (NC). ED visits for UTI in 2016-2019 were identified by ICD-10 code from NC's ZIP code-level syndromic surveillance system and livestock counts were obtained from permit data and aerial imagery. We calculated separate hog and poultry spatial densities (animals/km2) by Census block with a 5 km buffer on the block perimeter and weighted by block population to estimate mean ZIP code densities. Associations between livestock density and UTI incidence were estimated using a reparameterized Besag-York-Mollié (BYM2) model with ZIP code population offsets to account for spatial autocorrelation. We excluded metropolitan and offshore ZIP codes and assessed effect measure modification by calendar year, ZIP code rurality, and patient sex, age, race/ethnicity, and health insurance status. In single-animal models, hog exposure was associated with increased UTI incidence (rate ratio [RR]: 1.21, 95 % CI: 1.07-1.37 in the highest hog-density tertile), but poultry exposure was associated with reduced UTI rates (RR: 0.86, 95 % CI: 0.81-0.91). However, the reference group for single-animal poultry models included ZIP codes with only hogs, which had some of the highest UTI rates; when compared with ZIP codes without any hogs or poultry, there was no association between poultry exposure and UTI incidence. Hog exposure was associated with increased UTI incidence in areas that also had medium to high poultry density, but not in areas with low poultry density, suggesting that intense hog production may contribute to increased UTI incidence in neighboring communities.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arbor J L Quist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Mendrinos A, Ramesh B, Ruktanonchai CW, Gohlke JM. Poultry Concentrated Animal-Feeding Operations on the Eastern Shore, Virginia, and Geospatial Associations with Adverse Birth Outcomes. Healthcare (Basel) 2022; 10:healthcare10102016. [PMID: 36292462 PMCID: PMC9602095 DOI: 10.3390/healthcare10102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022] Open
Abstract
Concentrated animal-feeding operations (CAFOs) emit pollution into surrounding areas, and previous research has found associations with poor health outcomes. The objective of this study was to investigate if home proximity to poultry CAFOs during pregnancy is associated with adverse birth outcomes, including preterm birth (PTB) and low birth weight (LBW). This study includes births occurring on the Eastern Shore, Virginia, from 2002 to 2015 (N = 5768). A buffer model considering CAFOs within 1 km, 2 km, and 5 km of the maternal residence and an inverse distance weighted (IDW) approach were used to estimate proximity to CAFOs. Associations between proximity to poultry CAFOs and adverse birth outcomes were determined by using regression models, adjusting for available covariates. We found a −52.8 g (−95.8, −9.8) change in birthweight and a −1.51 (−2.78, −0.25) change in gestational days for the highest tertile of inverse distance to CAFOs. Infants born with a maternal residence with at least one CAFO within a 5 km buffer weighed −47 g (−94.1, −1.7) less than infants with no CAFOs within a 5 km buffer of the maternal address. More specific measures of exposure pathways via air and water should be used in future studies to refine mediators of the association found in the present study.
Collapse
Affiliation(s)
- Antonia Mendrinos
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Balaji Ramesh
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Corrine W. Ruktanonchai
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Julia M. Gohlke
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
8
|
Quist AJL, Holcomb DA, Fliss MD, Delamater PL, Richardson DB, Engel LS. Exposure to industrial hog operations and gastrointestinal illness in North Carolina, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154823. [PMID: 35341848 PMCID: PMC9133154 DOI: 10.1016/j.scitotenv.2022.154823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
With 9 million hogs, North Carolina (NC) is the second leading hog producer in the United States. Most hogs are housed at concentrated animal feeding operations (CAFOs), where millions of tons of hog waste can pollute air and water with fecal pathogens that can cause diarrhea, vomiting, and/or nausea (known as acute gastrointestinal illness (AGI)). We used NC's ZIP code-level emergency department (ED) data to calculate rates of AGI ED visits (2016-2019) and swine permit data to estimate hog exposure. Case exposure was estimated as the inverse distances from each hog CAFO to census block centroids, weighting with Gaussian decay and by manure amount per CAFO, then aggregated to ZIP code using population weights. We compared ZIP codes in the upper quartile of hog exposure ("high hog exposed") to those without hog exposure. Using inverse probability of treatment weighting, we created a control with similar demographics to the high hog exposed population and calculated rate ratios using quasi-Poisson models. We examined effect measure modification of rurality and race using adjusted models. In high hog exposed areas compared to areas without hog exposure, we observed a 11% increase (95% CI: 1.06, 1.17) in AGI rate and 21% increase specifically in rural areas (95% CI: 0.98, 1.43). When restricted to rural areas, we found an increased AGI rate among American Indian (RR = 4.29, 95% CI: 3.69, 4.88) and Black (RR = 1.45, 95% CI: 0.98, 1.91) residents. The association was stronger during the week after heavy rain (RR = 1.41, 95% CI: 1.19, 1.62) and in areas with both poultry and swine CAFOs (RR = 1.52, 95% CI: 1.48, 1.57). Residing near CAFOs may increase rates of AGI ED visits. Hog CAFOs are disproportionally built near rural Black and American Indian communities in NC and are associated with increased AGI most strongly in these populations.
Collapse
Affiliation(s)
- Arbor J L Quist
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Mike Dolan Fliss
- Injury Prevention Research Center, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Paul L Delamater
- Department of Geography, University of North Carolina, Chapel Hill, NC 27514, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Fecho K, Ahalt SC, Knowles M, Krishnamurthy A, Leigh M, Morton K, Pfaff E, Wang M, Yi H. Leveraging Open Electronic Health Record Data and Environmental Exposures Data to Derive Insights Into Rare Pulmonary Disease. Front Artif Intell 2022; 5:918888. [PMID: 35837616 PMCID: PMC9274244 DOI: 10.3389/frai.2022.918888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Research on rare diseases has received increasing attention, in part due to the realized profitability of orphan drugs. Biomedical informatics holds promise in accelerating translational research on rare disease, yet challenges remain, including the lack of diagnostic codes for rare diseases and privacy concerns that prevent research access to electronic health records when few patients exist. The Integrated Clinical and Environmental Exposures Service (ICEES) provides regulatory-compliant open access to electronic health record data that have been integrated with environmental exposures data, as well as analytic tools to explore the integrated data. We describe a proof-of-concept application of ICEES to examine demographics, clinical characteristics, environmental exposures, and health outcomes among a cohort of patients enriched for phenotypes associated with cystic fibrosis (CF), idiopathic bronchiectasis (IB), and primary ciliary dyskinesia (PCD). We then focus on a subset of patients with CF, leveraging the availability of a diagnostic code for CF and serving as a benchmark for our development work. We use ICEES to examine select demographics, co-diagnoses, and environmental exposures that may contribute to poor health outcomes among patients with CF, defined as emergency department or inpatient visits for respiratory issues. We replicate current understanding of the pathogenesis and clinical manifestations of CF by identifying co-diagnoses of asthma, chronic nasal congestion, cough, middle ear disease, and pneumonia as factors that differentiate patients with poor health outcomes from those with better health outcomes. We conclude by discussing our preliminary findings in relation to other published work, the strengths and limitations of our approach, and our future directions.
Collapse
Affiliation(s)
- Karamarie Fecho
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stanley C. Ahalt
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael Knowles
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashok Krishnamurthy
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Margaret Leigh
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | | | - Emily Pfaff
- North Carolina Clinical and Translational Sciences Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Max Wang
- CoVar Applied Technologies, Durham, NC, United States
| | - Hong Yi
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|