1
|
Zhang Z, Sun L, Deng C, Dong L, Xu R, Nie C, Yang Q. A new perspective on anthropogenic nitrogen loss mitigation strategies: Integrated control via sustainable regional integration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170188. [PMID: 38244631 DOI: 10.1016/j.scitotenv.2024.170188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Unregulated regional integrated development disrupts the reactive nitrogen (Nr) cycle, adding complexity to anthropogenic Nr environmental losses. The objective of this study was to establish a framework for mitigating anthropogenic Nr loss through a new regional integration perspective by analyzing anthropogenic Nr loss and integrated control strategies in the Yangtze River Delta (YRD) region from 2011 to 2020. The results revealed that the total Nr loss in the YRD ranged from 1780.7 to 1972.0 Gg N yr-1. Re-linking cropland and livestock is crucial for reducing Nr loss, as they act as the main sources of Nr loss. Spatial analysis at the regional scale revealed that regional integration has led to a dispersion of Nr loss, while uneven development among cities has resulted in a westward shift of 8.6 km in the Nr loss centroid, suggesting the need for the implementation of collaborative governance and integrated environmental regulation in the YRD. At the city scale, 27 cities were clustered into six types based on the similarity of Nr loss structural characteristics, allowing for the development of targeted reduction policies based on the specific Nr structural characteristics of each city. The results of driver and mitigation potential analysis indicated the feasibility of achieving the shared goal of sustainable regional integration and the application of optimal mitigation strategies in different cities and the YRD. Overall, the new-perspective framework established in this study provides valuable references for sustainable Nr management in the context of regional integration.
Collapse
Affiliation(s)
- Zeqian Zhang
- State key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui Sun
- State key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenning Deng
- State key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Dong
- State key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Rui Xu
- State key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chong Nie
- State key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Queping Yang
- State key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Gao Y, Wang S, Zhang C, Xing C, Tan W, Wu H, Niu X, Liu C. Assessing the impact of urban form and urbanization process on tropospheric nitrogen dioxide pollution in the Yangtze River Delta, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122436. [PMID: 37640224 DOI: 10.1016/j.envpol.2023.122436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Optimizing urban form through urban planning and management policies can improve air quality and transition to demand-side control. Nitrogen dioxide (NO2) in the urban atmosphere, mainly emitted by anthropogenic sources such as industry and vehicles, is a key precursor of fine particles and ozone pollution. Both NO2 and its secondary pollutants pose health risks for humans. Here we assess the interactions between urban forms and airborne NO2 pollution in different cities with various stages of urbanization in the Yangtze River Delta (YRD) in China, by using the machine learning and geographical regression model. The results reveal a strong correlation between urban fragmentation and tropospheric NO2 vertical column density (TVCD) in YRD cities in 2020, particularly those with lower or higher levels of urbanization. The correlation coefficients (R2) between NO2 TVCD and the largest patch index (a metric of urban fragmentation) in different cities are greater than 0.8. For cities at other urbanization stages, population and road density are strongly correlated with NO2 TVCD, with an R2 larger than 0.61. This study highlights the interdependence among urbanization, urban forms, and air pollution, emphasizing the importance of customized urban landscape management strategies for mitigating urban air pollution.
Collapse
Affiliation(s)
- Yuanyun Gao
- Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 8 Jiang Wang Miao St., Nanjing 210042, China
| | - Shuntian Wang
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, Ecological Systems Design, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland; Department of Humanities, Social, And Political Sciences, Institute of Science, Technology, And Policy (ISTP), Swiss Federal Institute of Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Chengxin Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | - Chengzhi Xing
- Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wei Tan
- Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hongyu Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
| | - Xinhan Niu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Cheng Liu
- Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Yan X, Tuo H, Lai Y. A Two-Way Fixed Effects Estimation on the Impact of Industrial Land Supply on Environmental Pollution in Urban China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14890. [PMID: 36429608 PMCID: PMC9690892 DOI: 10.3390/ijerph192214890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Despite the great economic growth and fast urbanization process in the past four decades, China is now suffering severely from environmental pollution. Local governments' industrial land supply behaviors have a great impact on local investment, economic growth, and environmental pollution, which has not been effectively evaluated. To fill this gap, this paper quantitatively investigates the impact of industrial land supply by local governments on environmental pollution based on a two-way fixed effects model. A comprehensive and reliable data set for 277 Chinese prefecture-level cities from 2009 to 2017 has been collected for analysis. The findings suggest that the increase of the ratio of industrial and mining storage land to total land supply significantly increases the concentration of PM2.5. The results remain significant and robust after a series of robustness tests. The negative impacts on environmental quality caused by differences in land supply behavior are greater in the central and western regions. We further explored intermediate mechanisms for the environmental impact of local governments' allocations of industrial land. The findings suggest that greater industrial land transfer by local governments leads to an expansion in the scale of regional secondary industry and increases in local fiscal deficit. Unbalanced industrial development, insufficient corporate innovation, and insufficient investment in environmental protection will increase pollution. This study provides a reference for improving regulatory measures on land transactions and for formulating regional polices for environmental protection.
Collapse
Affiliation(s)
- Xiangqi Yan
- School of Economics, Jinan University, Guangzhou 510632, China
| | - Hanbing Tuo
- School of Economics, Jinan University, Guangzhou 510632, China
| | - Yani Lai
- School of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
4
|
Zhou M, Li Y, Zhang F. Spatiotemporal Variation in Ground Level Ozone and Its Driving Factors: A Comparative Study of Coastal and Inland Cities in Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159687. [PMID: 35955043 PMCID: PMC9367812 DOI: 10.3390/ijerph19159687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Variations in marine and terrestrial geographical environments can cause considerable differences in meteorological conditions, economic features, and population density (PD) levels between coastal and inland cities, which in turn can affect the urban air quality. In this study, a five-year (2016-2020) dataset encompassing air monitoring (from the China National Environmental Monitoring Centre), socioeconomic statistical (from the Shandong Province Bureau of Statistics) and meteorological data (from the U.S. National Centers for Environmental Information, National Oceanic and Atmospheric Administration) was employed to investigate the spatiotemporal distribution characteristics and underlying drivers of urban ozone (O3) in Shandong Province, a region with both land and sea environments in eastern China. The main research methods included the multiscale geographically weighted regression (MGWR) model and wavelet analysis. From 2016 to 2019, the O3 concentration increased year by year in most cities, but in 2020, the O3 concentration in all cities decreased. O3 concentration exhibited obvious regional differences, with higher levels in inland areas and lower levels in eastern coastal areas. The MGWR analysis results indicated the relationship between PD, urbanization rate (UR), and O3 was greater in coastal cities than that in the inland cities. Furthermore, the wavelet coherence (WTC) analysis results indicated that the daily maximum temperature was the most important factor influencing the O3 concentration. Compared with NO, NO2, and NOx (NOx ≡ NO + NO2), the ratio of NO2/NO was more coherent with O3. In addition, the temperature, the wind speed, nitrogen oxides, and fine particulate matter (PM2.5) exerted a greater impact on O3 in coastal cities than that in inland cities. In summary, the effects of the various abovementioned factors on O3 differed between coastal cities and inland cities. The present study could provide a scientific basis for targeted O3 pollution control in coastal and inland cities.
Collapse
Affiliation(s)
- Mengge Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengying Zhang
- China National Environmental Monitoring Centre, Beijing 100012, China
| |
Collapse
|