1
|
Gao Z, Zhou X. A review of the CAMx, CMAQ, WRF-Chem and NAQPMS models: Application, evaluation and uncertainty factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123183. [PMID: 38110047 DOI: 10.1016/j.envpol.2023.123183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
With the gradual deepening of the research and governance of air pollution, chemical transport models (CTMs), especially the third-generation CTMs based on the "1 atm" theory, have been recognized as important tools for atmospheric environment research and air quality management. In this review article, we screened 2396 peer-reviewed manuscripts on the application of four pre-selected regional CTMs in the past five years. CAMx, CMAQ, WRF-Chem and NAQPMS models are well used in the simulation of atmospheric pollutants. In the simulation study of secondary pollutants such as O3, secondary organic aerosol (SOA), sulfates, nitrates, and ammonium (SNA), the CMAQ model has been widely applied. Secondly, model evaluation indicators are diverse, and the establishment of evaluation criteria has gone through the long-term efforts of predecessors. However, the model performance evaluation system still needs further specification. Furthermore, temporal-spatial resolution, emission inventory, meteorological field and atmospheric chemical mechanism are the main sources of uncertainty, and have certain interference with the simulation results. Among them, the inventory and mechanism are particularly important, and are also the top priorities in future simulation research.
Collapse
Affiliation(s)
- Zhaoqi Gao
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China
| | - Xuehua Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, Shandong Province, China.
| |
Collapse
|
2
|
Liu S, Wang H, Zhao D, Ke Y, Wu Z, Shen L, Zhao T. Aircraft observations of aerosols and BC in autumn over Guangxi Province, China: Diurnal variation, vertical distribution and source appointment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167550. [PMID: 37802359 DOI: 10.1016/j.scitotenv.2023.167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
To understand the vertical distribution characteristics of aerosols and black carbon (BC) in southwest China, 12 sorties were conducted from October 10 to November 3, 2020, and the vertical profiles of aerosols and BC at different times in Nanning, Guangxi Province, in autumn were obtained. The contents of aerosols (Na <100 cm-3) and BC (MBC <0.11 μg∙m-3) at 2000-6000 m were small and did not change with height. The vertical profiles of Na and MBC below 2000 m were affected by the boundary layer (PBL), and the vertical profiles had obvious diurnal variations. Aerosols and BC in the residual layer (RL) entered PBL at 10:00-12:00, resulting in increased the values of Na (1971 cm-3) and MBC (2.93 μg∙m-3) in PBL. Under intense turbulent activity in PBL from 13:00 to 15:00, Na and MBC changed little with height. At 17:00, PBL height dropped, aerosols and BC remained in RL. From 18:00 to 22:00, the PBL height decreased, and the aerosols and BC were trapped below 200 m. BC below 2000 m was mainly from fossil fuel combustion. Between 2000 m and 6000 m, MBCff > MBCbb at 12:00-17:00, and MBCbb was similar to MBCff at 10:00, 18:00 and 22:00. The air masses passing over Southeast Asian countries and Guangdong Province brought more BC to Guangxi Province. Air masses from different sources had different effects on aerosols in Guangxi Province. Below 3000 m, the value of Na under the influence of land air mass was greater than that under the influence of ocean air mass. Above 3000 m, different sources of air mass mainly affected the aerosol number concentration spectrum. Under the influence of ocean air mass, the number and concentration of aerosol with particle size of 0.11 μm and 0.24 μm had increased in Guangxi Province.
Collapse
Affiliation(s)
- Sihan Liu
- China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Honglei Wang
- China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Delong Zhao
- Beijing Weather Modification Office, Beijing 100089, China
| | - Yue Ke
- China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zihao Wu
- China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lijuan Shen
- School of Atmosphere and Remote Sensing, Wuxi University, Wuxi 214105, China
| | - Tianliang Zhao
- China Meteorological Administration Aerosol-Cloud and Precipitation Key Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
3
|
Wang Z, Cao R, Li B, Cai M, Peng ZR, Zhang G, Lu Q, He HD, Zhang J, Shi K, Liu Y, Zhang H, Hu X. Characterizing nighttime vertical profiles of atmospheric particulate matter and ozone in a megacity of south China using unmanned aerial vehicle measurements. ENVIRONMENTAL RESEARCH 2023; 236:116854. [PMID: 37562735 DOI: 10.1016/j.envres.2023.116854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Daytime atmospheric pollution has received wide attention, while the vertical structures of atmospheric pollutants at night play a crucial role in the photochemical process on the following day, which is still less reported. Focusing on Guangzhou, a megacity of South China, we established an unmanned aerial vehicle (UAV) equipped with micro detectors to collect consecutive high-resolution samples of fine particle (PM2.5), submicron particle (PM1.0), black carbon (BC) and ozone (O3) concentrations in the atmosphere, as well as the air temperature (AT) and relative humidity (RH) within a 500 m altitude during nighttime from Oct. 24th to Nov. 6th, 2018. The measurements showed that PM2.5, PM1.0, and BC decreased with altitude and were influenced by the nighttime shallow planetary boundary layer (PBL) where BC was more accumulated and fluctuated. In contrast, O3 was positively correlated with altitude. Backward trajectory clustering and Pasquill stability classification showed that advection and convection significantly influenced the vertical distribution of all pollutants, particularly particulate matter. External air masses carrying high concentrations of pollutants increased PM1.0 and PM2.5 levels by 145% and 455%, respectively, compared to unaffected periods. The ratio of BC to PM2.5 indicated that local emissions had a minor role in nighttime particulate matter. Vertical transport caused by atmospheric instability reduced the differences in pollutant concentrations at various heights. Geodetector and generalized additive model showed that RH and BC accumulation in the PBL were significant factors influencing vertical changes of the secondary aerosol intensity as indicated by the ratio of PM1.0 to PM2.5. The joint explanation of RH and atmospheric stability with other variables such as BC is essential to understand the generation of secondary aerosols. These findings provide insights into regional and local measures to prevent and control night-time particulate matter pollution.
Collapse
Affiliation(s)
- Zhanyong Wang
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350108, China.
| | - Ruhui Cao
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350108, China
| | - Bai Li
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Cai
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhong-Ren Peng
- iAdapt: International Center for Adaptation Planning and Design, College of Design, Construction and Planning, University of Florida, PO Box 115706, Gainesville, FL, 32611-5706, USA; Healthy Building Research Center, Ajman University, Ajman, UAE
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qingchang Lu
- Department of Traffic Information and Control Engineering, School of Electronic and Control Engineering, Chang'an University, Xi'an, 710064, China
| | - Hong-di He
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinpu Zhang
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou, 510006, Guangdong, China
| | - Kai Shi
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Yonghong Liu
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hui Zhang
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xisheng Hu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Yuan Z, Pei CL, Li HX, Lin L, Hou R, Liu S, Zhang K, Cai MG, Xu XR. Vertical distribution and transport of microplastics in the urban atmosphere: New insights from field observations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165190. [PMID: 37385506 DOI: 10.1016/j.scitotenv.2023.165190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
The distribution and transport of atmospheric microplastics (AMPs) have raised concerns regarding their potential effects on the environment and human health. Although previous studies have reported the presence of AMPs at ground level, there is a lack of comprehensive understanding of their vertical distribution in urban environments. To gain insight into the vertical profile of AMPs, field observations were conducted at four different heights (ground level, 118 m, 168 m and 488 m) of the Canton Tower in Guangzhou, China. Results showed that the profiles of AMPs and other air pollutants had similar layer distribution patterns, although their concentrations differed. The majority of AMPs were composed of polyethylene terephthalate and rayon fibers ranging from 30 to 50 μm. As a result of atmospheric thermodynamics, AMPs generated at ground level were only partially transported upward, leading to a decrease in their abundance with increasing altitude. The study found that the stable atmospheric stability and lower wind speed between 118 m and 168 m resulted in the formation of a fine layer where AMPs tended to accumulate instead of being transported upward. This study for the first time delineated the vertical profile of AMPs within the atmospheric boundary layer, providing valuable data for understanding the environmental fate of AMPs.
Collapse
Affiliation(s)
- Zhen Yuan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Lei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR, China
| | - Ming-Gang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572100, China.
| |
Collapse
|
5
|
Yim SHL, Huang T. Analysis of the air quality in upper atmospheric boundary layer in a high-density city in Asia using 3-year vertical profiles measured by the 3-Dimensional Real-Time Atmospheric Monitoring System (3DREAMS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159137. [PMID: 36191711 DOI: 10.1016/j.scitotenv.2022.159137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Past studies focused on ground-level air quality, whereas air quality in upper atmospheric boundary layer (ABL) remains unclear due to lack of long-term and high time-resolution profile data. This study utilized the 3-Dimensional Real-Time Atmospheric Monitoring System (3DREAMS) to provide vertical profiles of aerosol backscatter coefficients and wind for three years (2019-2021), along with DustTrak to describe and analyze the characteristics of aerosols in the upper ABL in a high-density city in Asia (Hong Kong, China). It is the first study to assess the long-term record and spatial variations of upper-level aerosol in a high-density city using a LiDAR network. Results show an opposite diurnal profile of aerosol comparing between ground-level and upper ABL, which is different with the diurnal pattern observed in ground measurements (higher air pollutant concentration level in daytime and lower in nighttime). The co-location vertical wind measurements provided the explanation of the opposite diurnal patterns. The 3-year vertical profiles also show the significant spatial variation of vertical distribution of aerosol at different locations, whereas the temporal variations can be affected by various factors such as emissions and transboundary air pollution. Our episode analysis clearly demonstrated the capability of 3DREAMS to monitor transboundary air pollution with detailed information of horizontal transport and vertical convection. 3DREAMS is therefore proved as a suitable system for transboundary air pollution monitoring. Our findings provide a critical reference for atmospheric scientists and decisionmakers to understand transboundary air pollution.
Collapse
Affiliation(s)
- Steve Hung Lam Yim
- Asian school of the Environment, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Earth Observatory of Singapore, Nanyang Technological University, Singapore.
| | - Tao Huang
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| |
Collapse
|
6
|
Liang Y, Wu C, Wu D, Liu B, Li YJ, Sun J, Yang H, Mao X, Tan J, Xia R, Deng T, Li M, Zhou Z. Vertical distributions of atmospheric black carbon in dry and wet seasons observed at a 356-m meteorological tower in Shenzhen, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158657. [PMID: 36096219 DOI: 10.1016/j.scitotenv.2022.158657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) is a vital climate forcer in the atmosphere, but measurements of BC vertical profiles near the surface remain limited. This study investigates time-resolved vertical profiling of BC in both dry (December 2017) and wet (August 2018) seasons in Shenzhen, China, at a 356-m meteorological tower. In the dry season, five micro-aethalometers were deployed at different heights (2, 50, 100, 200, and 350 m), while four heights (2, 100, 200, and 350 m) were measured in the wet season. The concentrations of equivalent BC (eBC) showed a decreasing trend with altitude in the dry season, while a weaker vertical gradient was observed in the wet season. The diurnal variability of eBC in the dry season is also more significant than in the wet season. Correlation analysis between eBC concentrations at the ground and those at the upper levels suggest a better vertical mixing of eBC in the wet season than in the dry season. In the wet season when south wind prevailed, eBC concentration at ground level was likely reduced by the large amount of vegetation cover south to the sampling site. In the dry season, eBC concentrations at 350 m show little dependence on wind speed, implying that local emissions have a limited effect on eBC concentrations at 350 m. In the wet season when brown carbon influence was weak, higher wind speed leads to a higher Ångström exponent (AAE) at 350 m, likely associated with more aged BC particles. Cluster analysis of backward trajectories suggests that high eBC concentration was associated with air masses from Central China in both seasons. This study provides a better understanding on the influencing factors that affect the vertical distributions of BC in the lower part of the boundary layer.
Collapse
Affiliation(s)
- Yue Liang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Cheng Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Dui Wu
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Ben Liu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau
| | - Jiayin Sun
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Honglong Yang
- Shenzhen Meteorological Bureau, CMA, Shenzhen 518040, China
| | - Xia Mao
- Shenzhen Meteorological Bureau, CMA, Shenzhen 518040, China
| | - Jian Tan
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Rui Xia
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Tao Deng
- Institute of Tropical and Marine Meteorology, CMA, Guangzhou 510080, China
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| |
Collapse
|