1
|
Chen T, Zhao M, Chen M, Tang X, Qian Y, Li X, Wang Y, Liao X, Wu Y. High Concentrations of Tilmicosin Promote the Spread of Multidrug Resistance Gene tolC in the Pig Gut Microbiome Through Mobile Genetic Elements. Animals (Basel) 2024; 15:70. [PMID: 39795013 PMCID: PMC11718906 DOI: 10.3390/ani15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The impact of antibiotic therapy on the spread of antibiotic resistance genes (ARGs) and its relationship to gut microbiota remains unclear. This study investigated changes in ARGs, mobile genetic elements (MGEs), and gut microbial composition following tilmicosin administration in pigs. Thirty pigs were randomly divided into control (CK), low-concentration (0.2 g/kg; L), and high-concentration (0.4 g/kg; H) groups. Tilmicosin concentration in manure peaked on day 16 of dosing and dropped below detectable levels by day 13 of the withdrawal period. While tilmicosin did not significantly affect the total abundance of macrolide resistance genes (MRGs) (p > 0.05), it significantly increased the abundance of the multidrug resistance gene tolC in the H group compared with the L and CK groups during the withdrawal period (p < 0.05). This increase was associated with a coincidental rise in the abundance of MGEs (e.g., int1 and int2) and the growth of potential tolC-hosting bacteria such as Paenalcaligenes and Proteiniclasticum. Redundancy analysis showed gut microbial composition as the primary driver of MRG abundance, with MGEs, tilmicosin concentration, and manure physicochemical properties playing secondary roles. These findings suggest that high-dose tilmicosin may alter the gut microbiota and promote ARG spread via MGE-mediated transfer.
Collapse
Affiliation(s)
- Tao Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
| | - Minxing Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
| | - Majian Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
| | - Xiaoyue Tang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
| | - Yuliang Qian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
| | - Xiaoting Li
- Phage Research Center, Liaocheng University, Liaocheng 252000, China;
| | - Yan Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Xindi Liao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yinbao Wu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.C.); (M.Z.); (M.C.); (X.T.); (Y.Q.); (Y.W.); (X.L.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Prack McCormick B, Knecht CA, Sokolowski AC, Palladino PM, Rojas DE, Cristos DS, Rivera HJ, Gonçalves Vila Cova C, De Grazia J, Rodriguez HA, Tittonell P, Centrón D, Barrios MB. Fate of fluoroquinolones associated with antimicrobial resistance in circular periurban agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176874. [PMID: 39414035 DOI: 10.1016/j.scitotenv.2024.176874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Animal antibiotic use contributes to antimicrobial resistance (AMR) in humans. While animal manure benefits soil fertility, it also acts as hotspot for antibiotic residues, antibiotic-resistant bacteria, and their genes. Amending soils with poultry litter is recognized as "magic" among horticulture farmers and it remains a common practice globally. However, this poses a risk especially in countries where prophylactic use of antibiotics is allowed. In Argentina, fluoroquinolones are used in this way besides being listed as essential medicines and classified as "watch" by the World Health Organization. Antibiotic selective pressure can favour AMR in the environment but the fate of antibiotic residues and AMR dissemination from these practices remains poorly understood. Our research addresses this gap with a biological model tracing fluoroquinolones from poultry to soil to lettuce and tracking anthropogenic AMR with the proposed biomarker genes sul1 and intI1. Fresh poultry litter was stored for six months before application in a horticulture field experiment. The experiment included control and manured plots where lettuce was cultivated till harvest. Enrofloxacin concentration was 7.3 μg/kg in fresh poultry litter, while its metabolite ciprofloxacin was 39.22 μg/kg after storage. Although no fluoroquinolones were detected in soils, lettuce from manured plots contained enrofloxacin and ciprofloxacin at 14.97 and 9.77 μg/kg, respectively, providing evidence of fluoroquinolone bioaccumulation in plants. Abundance of sul1 and intI1 in poultry litter was not affected by storage. Manured soils showed better soil quality than controls, but sul1 gene abundance was 1.6 times higher, reaching 7.61 Log sul1/g soil. A less sensitive, but significant effect was registered for intI1. These findings show that static storage is insufficient to stop the transmission of antibiotics and AMR biomarkers from poultry to horticulture. Amending soil with industrial poultry litter contributes to pollution with these emergent contaminants and risks human antibiotic exposure through fresh vegetables.
Collapse
Affiliation(s)
- Barbara Prack McCormick
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC Groningen, the Netherlands; Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina.
| | - Camila A Knecht
- Universidad de Buenos Aires, Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (UBA-CONICET, IMPaM), Buenos Aires, Argentina
| | - Ana Clara Sokolowski
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Pablo Martín Palladino
- Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina), Instituto Tecnología de los Alimentos, Argentina
| | - Dante Emanuel Rojas
- Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina), Instituto Tecnología de los Alimentos, Argentina
| | - Diego Sebastián Cristos
- Instituto Nacional de Tecnología Agropecuaria (INTA, Argentina), Instituto Tecnología de los Alimentos, Argentina
| | - Hernan J Rivera
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Carola Gonçalves Vila Cova
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Javier De Grazia
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Hernán A Rodriguez
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| | - Pablo Tittonell
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, PO Box 11103, 9700 CC Groningen, the Netherlands
| | - Daniela Centrón
- Universidad de Buenos Aires, Instituto de Microbiología y Parasitología Médica, Facultad de Medicina, Laboratorio de Investigaciones en Mecanismos de Resistencia a Antibióticos (UBA-CONICET, IMPaM), Buenos Aires, Argentina
| | - Monica B Barrios
- Universidad Nacional de Lomas de Zamora, Facultad de Ciencias Agrarias, Laboratorio de suelos, Buenos Aires, Argentina
| |
Collapse
|
3
|
Ransirini AM, Elżbieta MS, Joanna G, Bartosz K, Wojciech T, Agnieszka B, Magdalena U. Fertilizing drug resistance: Dissemination of antibiotic resistance genes in soil and plant bacteria under bovine and swine slurry fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174476. [PMID: 38969119 DOI: 10.1016/j.scitotenv.2024.174476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The increasing global demand for food production emphasizes the use of organic animal fertilizers, such as manure and slurry, to support sustainable agricultural practices. However, recent studies highlight concerns about antibiotic resistance determinants in animal excrements, posing a potential risk of spreading antibiotic resistance genes (ARGs) in agricultural soil and, consequently, in food products. This study examines the dissemination of ARGs within the soil and plant-associated microbiomes in cherry radish following the application of swine and bovine slurry. In a 45-day pot experiment, slurry-amended soil, rhizospheric bacteria, and endophytic bacteria in radish roots and leaves were sampled and analyzed for 21 ARGs belonging to 7 Antibiotic Resistance Phenotypes (ARPs). The study also assessed slurry's impact on soil microbiome functional diversity, enzymatic activity, physicochemical soil parameters, and the concentration of 22 selected antimicrobials in soil and plant tissues. Tetracyclines and β-lactams were the most frequently identified ARGs in bovine and swine slurry, aligning with similar studies worldwide. Swine slurry showed a higher prevalence of ARGs in soil and plant-associated bacteria, particularly TET genes, reflecting pig antibiotic treatments. The persistent dominance of TET genes across slurry, soil, and plant microbiomes highlights significant influence of slurry application on gene occurrence in plant bacteria. The presence of ARGs in edible plant parts underscores health risks associated with raw vegetable consumption. Time-dependent dynamics of ARG occurrence highlighted their persistent presence throughout the experiment duration, influenced by the environmental factors and antibiotic residuals. Notably, ciprofloxacin, which was the only one antimicrobial detected in fertilized soil, significantly impacted bovine-amended variants. Soil salinity modifications induced by slurry application correlated with changes in ARG occurrence. Overall, the research underscores the complex relationships between agricultural practices, microbial activity, and antibiotic resistance dissemination, emphasizing the need for a more sustainable and health-conscious farming approaches.
Collapse
Affiliation(s)
- Attanayake Mudiyanselage Ransirini
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Mierzejewska-Sinner Elżbieta
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Giebułtowicz Joanna
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Kózka Bartosz
- Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha 1, 02-097 Warsaw, Poland
| | - Tołoczko Wojciech
- Department of Physical Geography, Faculty of Geography, University of Lodz, Prez. Gabriela Narutowicza 88, 90-139, Lodz, Poland
| | - Bednarek Agnieszka
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Urbaniak Magdalena
- University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
4
|
Huang L, Sun J, Guo Q, Jiang Y, Hao B, Chang G. Effect of Early Ciprofloxacin Administration on Growth Performance, Meat Quality, Food Safety, and Metabolomic Profiles in Xueshan Chickens. Animals (Basel) 2024; 14:2395. [PMID: 39199929 PMCID: PMC11350917 DOI: 10.3390/ani14162395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
To investigate the effects of early administration of ciprofloxacin (CIP) on Xueshan chickens, in this study Xueshan chickens were measured for growth performance, tested for drug residues, evaluated for meat quality, and muscle metabolism changes were explored using a non-target metabolomics approach. Experimental findings revealed that early CIP use did not significantly impact the overall growth rate of Xueshan chickens (p > 0.05). However, notable alterations in meat quality were observed: the CIP-treated group exhibited a significant decrease in muscle pH (pH1 and pH24) and a marked increase in drip loss and moisture content (p > 0.05). No CIP residues were detected in muscle tissue. Untargeted metabolomics analyses unveiled significant alterations in the metabolic profile of market-age chickens following CIP treatment. Both functional enrichment and metabolic network analyses indicated significant effects on the ko01120 (microbial metabolism in diverse environments) and ko00350 (tyrosine metabolism) pathways, implying that CIP treatment may influence chicken meat quality by modulating microbial communities and amino acid metabolism. This study provides a crucial foundation for understanding the impact of antibiotics on meat quality and metabolism in poultry production, offering scientific insights for optimizing antibiotic-use strategies and safeguarding poultry product quality.
Collapse
Affiliation(s)
- Lan Huang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.H.); (J.S.); (Q.G.); (Y.J.)
| | - Jialuo Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.H.); (J.S.); (Q.G.); (Y.J.)
| | - Qixin Guo
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.H.); (J.S.); (Q.G.); (Y.J.)
| | - Yong Jiang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.H.); (J.S.); (Q.G.); (Y.J.)
| | - Bai Hao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.H.); (J.S.); (Q.G.); (Y.J.)
| |
Collapse
|
5
|
Stanton IC, Tipper HJ, Chau K, Klümper U, Subirats J, Murray AK. Does Environmental Exposure to Pharmaceutical and Personal Care Product Residues Result in the Selection of Antimicrobial-Resistant Microorganisms, and is this Important in Terms of Human Health Outcomes? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:623-636. [PMID: 36416260 DOI: 10.1002/etc.5498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The environment plays a critical role in the development, dissemination, and transmission of antimicrobial resistance (AMR). Pharmaceuticals and personal care products (PPCPs) enter the environment through direct application to the environment and through anthropogenic pollution. Although there is a growing body of evidence defining minimal selective concentrations (MSCs) of antibiotics and the role antibiotics play in horizontal gene transfer (HGT), there is limited evidence on the role of non-antibiotic PPCPs. Existing data show associations with the development of resistance or effects on bacterial growth rather than calculating selective endpoints. Research has focused on laboratory-based systems rather than in situ experiments, although PPCP concentrations found throughout wastewater, natural water, and soil environments are often within the range of laboratory-derived MSCs and at concentrations shown to promote HGT. Increased selection and HGT of AMR by PPCPs will result in an increase in total AMR abundance in the environment, increasing the risk of exposure and potential transmission of environmental AMR to humans. There is some evidence to suggest that humans can acquire resistance from environmental settings, with water environments being the most frequently studied. However, because this is currently limited, we recommend that more evidence be gathered to understand the risk the environment plays in regard to human health. In addition, we recommend that future research efforts focus on MSC-based experiments for non-antibiotic PPCPS, particularly in situ, and investigate the effect of PPCP mixtures on AMR. Environ Toxicol Chem 2024;43:623-636. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universitӓt Dresden, Dresden, Germany
| | - Jessica Subirats
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona, Spain
| | - Aimee K Murray
- College of Medicine and Health, University of Exeter, Cornwall, UK
| |
Collapse
|
6
|
Wang C, Wu S, Zhou W, Hu L, Hu Q, Cao Y, Wang L, Chen X, Zhang Q. Effects of Neolamarckia cadamba leaves extract on microbial community and antibiotic resistance genes in cecal contents and feces of broilers challenged with lipopolysaccharides. Appl Environ Microbiol 2024; 90:e0110723. [PMID: 38231769 PMCID: PMC10880616 DOI: 10.1128/aem.01107-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 01/19/2024] Open
Abstract
The effects of Neolamarckia cadamba leaves extract (NCLE), with effective ingredients of flavonoids, on antibiotic resistance genes (ARGs) and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation (LPS) were investigated. LPS stimulation increased (P < 0.05) the relative abundance of ARGs and mobile genetic elements (MGEs), such as tet(W/N/W), APH(3')-IIIa, ErmB, tet (44), ANT (6)-Ia, tet(O), tet (32), Vang_ACT_CHL, myrA, ANT (6)-Ib, IncQ1, tniB, and rep2 in cecal contents. However, the difference disappeared (P > 0.05) when NCLE was added at the same time. These differential ARGs and MGEs were mainly correlated (P < 0.01) with Clostridiales bacterium, Lachnospiraceae bacterium, and Candidatus Woodwardibium gallinarum. These species increased in LPS-stimulated broilers and decreased when NCLE was applied at the same time. In feces, LPS stimulation decreased (P < 0.05) the relative abundance of tet(Q), adeF, ErmF, Mef(En2), OXA-347, tet (40), npmA, tmrB, CfxA3, and ISCrsp1, while the LPS + NCLE treated group showed no significant effect (P > 0.05) on these ARGs. These differential ARGs and MGEs in feces were mainly correlated (P < 0.01) with Clostridiales bacterium, Pseudoflavonifractor sp. An184, Flavonifractor sp. An10, Ruminococcaceae bacterium, etc. These species increased in LPS-stimulated broilers and increased when NCLE was applied at the same time. In conclusion, LPS stimulation and NCLE influenced microbial communities and associated ARGs in both cecal contents and feces of broilers. NCLE alleviated the change of ARGs and MGEs in LPS-induced broilers by maintaining the microbial balance.IMPORTANCEAntibiotics showed a positive effect on gut health regulation and growth performance improvement in livestock breeding, but the antimicrobial resistance threat and environment pollution problem are increasingly severe with antibiotics abuse. As alternatives, plant extract containing bioactive substances are increasingly used to improve immunity and promote productivity. However, little is known about their effects on diversity and abundance of ARGs. Here, we investigated the effects of NCLE, with effective ingredients of flavonoids, on ARGs and relevant microorganisms in cecal contents and feces of broilers treated with or without lipopolysaccharide stimulation. We found that NCLE reduced the abundance of ARGs in cecal contents of lipopolysaccharide-induced broilers by maintaining the microbial balance. This study provides a comprehensive view of cecal and fecal microbial community, ARGs, and MGEs of broiler following LPS stimulation and NCLE treatment. It might be used to understand and control ARGs dissemination in livestock production.
Collapse
Affiliation(s)
- Cheng Wang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuo Wu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Wei Zhou
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Lei Hu
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qi Hu
- Bioinformation Center, NEOMICS Institute, Shenzhen, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- State key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoyang Chen
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| | - Qing Zhang
- College of Forestry and Landscape Architecture, Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Zhang Y, Cheng D, Xie J, Hu Q, Xie J, Shi X. Long-term field application of manure induces deep selection of antibiotic resistomes in leaf endophytes of Chinese cabbage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163334. [PMID: 37061064 DOI: 10.1016/j.scitotenv.2023.163334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic resistomes in leaf endophytes of vegetables threaten human health through the food chain. However, little is known about the ability of long-term manure fertilization to impact the deep selection of antibiotic resistance genes (ARGs) in leaf endophytes of vegetables planted in different types of soils. Here, by high-throughput quantitative PCR, we characterized the ARGs of leaf endophytes of Chinese cabbage (Brassica pekinensis (Lour.) Rupr.) grown in long-term (14 year) manure-amended acidic, neutral and calcareous soils. In total, 87 ARGs and 4 mobile genetic elements (MGEs) were detected in all the samples. Manure fertilization significantly increased the ARG numbers and normalized abundance in leaf endophytes, especially in acidic soil. Moreover, in acidic soil, manure application also led to a higher increase in the normalized abundance of opportunist and specialist ARGs, and more opportunist and specialist ARGs posed a high risk according to their risk ranks. Random forest analysis revealed that Proteobacteria and MGEs were the major drivers affecting the normalized abundance of opportunist and specialist ARGs in both acidic and neutral soils, respectively. In calcareous soil, Cyanobacteria and Actinobacteria were the most important contributors. Collectively, this study expands our knowledge about the deep selection of plant resistomes under long-term manure application.
Collapse
Affiliation(s)
- Yu Zhang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Dengmiao Cheng
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jun Xie
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Qijuan Hu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiawei Xie
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
8
|
Sun L, Tang D, Tai X, Wang J, Long M, Xian T, Jia H, Wu R, Ma Y, Jiang Y. Effect of composted pig manure, biochar, and their combination on antibiotic resistome dissipation in swine wastewater-treated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121323. [PMID: 36822312 DOI: 10.1016/j.envpol.2023.121323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The prevalence of antibiotic resistance genes (ARGs), owing to irrigation using untreated swine wastewater, in vegetable-cultivated soils around swine farms poses severe threats to human health. Furthermore, at the field scale, the remediation of such soils is still challenging. Therefore, here, we performed field-scale experiments involving the cultivation of Brassica pekinensis in a swine wastewater-treated soil amended with composted pig manure, biochar, or their combination. Specifically, the ARG and mobile genetic element (MGE) profiles of bulk soil (BS), rhizosphere soil (RS), and root endophyte (RE) samples were examined using high-throughput quantitative polymerase chain reaction. In total, 117 ARGs and 22 MGEs were detected. Moreover, we observed that soil amendment using composted pig manure, biochar, or their combination decreased the absolute abundance of ARGs in BS and RE after 90 days of treatment. However, the decrease in the abundance of ARGs in RS was not significant. We also observed that the manure and biochar co-application showed a minimal synergistic effect. To clarify this observation, we performed network and Spearman correlation analyses and used structure equation models to explore the correlations among ARGs, MGEs, bacterial composition, and soil properties. The results revealed that the soil amendments reduced the abundances of MGEs and potential ARG-carrying bacteria. Additionally, weakened horizontal gene transfer was responsible for the dissipation of ARGs. Thus, our results indicate that composted manure application, with or without biochar, is a useful strategy for soil nutrient supplementation and alleviating farmland ARG pollution, providing a justification for using an alternative to the common agricultural practice of treating the soil using only untreated swine wastewater. Additionally, our results are important in the context of soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Likun Sun
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Engineering Research Center for Animal Waste Utilization, Gansu Agricultural University, Lanzhou, 730070, China
| | - Defu Tang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xisheng Tai
- College of Urban Environment, Lanzhou City University, China
| | - Jiali Wang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Min Long
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tingting Xian
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haofan Jia
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Renfei Wu
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongqi Ma
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yunpeng Jiang
- College of Animal Science, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
9
|
Sun G, Zhang Q, Dong Z, Dong D, Fang H, Wang C, Dong Y, Wu J, Tan X, Zhu P, Wan Y. Antibiotic resistant bacteria: A bibliometric review of literature. Front Public Health 2022; 10:1002015. [PMID: 36466520 PMCID: PMC9713414 DOI: 10.3389/fpubh.2022.1002015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) are a serious threat to the health of people and the ecological environment. With this problem becoming more and more serious, more countries made research on the ARB, and the research number has been sharply increased particularly over the past decade. Therefore, it is quite necessary to globally retrace relevant researches on the ARB published from 2010 to 2020. This will help researchers to understand the current research situation, research trends and research hotspots in this field. This paper uses bibliometrics to examine publications in the field of ARB from 2010 to 2020 that were retrieved from the Web of Science (WOS). Our study performed a statistical analysis of the countries, institutions, journals, authors, research areas, author keywords, Essential Science Indicators (ESI) highly cited papers, and ESI hotspots papers to provide an overview of the ARB field as well as research trends, research hotspots, and future research directions in the field. The results showed that the number of related studies is increasing year by year; the USA is most published in the field of ARB; China is the most active in this field in the recent years; the Chinese Acad Sci published the most articles; Sci. Total Environ. published the greatest number of articles; CM Manaia has the most contributions; Environmental Sciences and Ecology is the most popular research area; and "antibiotic resistance," "antibiotics," and "antibiotic resistance genes" were the most frequently occurring author keywords. A citation analysis showed that aquatic environment-related antibiotic resistance is a key research area in this field, while antimicrobial nanomaterial-related research is a recent popular topic.
Collapse
Affiliation(s)
- Guojun Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Yichen Dong
- Department of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jiezhou Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Xuanzhe Tan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Peiyao Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
10
|
Lin Z, Yang C, Xia B, Qiu M, Peng H, Jiang X, Du H, Li Q, Zhang Z, Liu Y, Yu C. Succession of the microbial communities and metabolic functions in composting or deep burial processing of dead chickens. Br Poult Sci 2022; 64:185-194. [PMID: 36222110 DOI: 10.1080/00071668.2022.2130683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study examined the effects of composting and deep burial techniques on degradation efficiency of dead chickens. Different raw materials (crushed branches or rape straws) and disinfectants (quicklime or bleaching powder) were applied in composting and deep burial process, respectively. The whole process lasted for 90 d in both summer and winter.2. High throughput sequencing displayed that Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria and Deinococcus-Thermus were the most dominant bacterial phyla during the experiment. The relative abundance of Firmicutes dwindled gradually with prolonged composting duration, while Proteobacteria, Bacteroidetes and Deinococcus-Thermous increased gradually over time.3. The bacterial functions identified from the KEGG pathway showed that amino acid and carbohydrate metabolism were the major microbial metabolic pathways that determined final degradation efficiency. At the end of the trial, the decomposition status of chicken carcasses and faecal coliforms were measured.4. The results demonstrated that the optimum decomposition effect was obtained in composting compared with other treatment groups. Low ambient temperature reduced degradation efficiency, due to restricted microbial activity. In addition, faecal coliforms were not completely removed by the deep burial process of dead chickens in winter.5.These findings provide a theoretical basis for the feasibility of composting chicken carcasses instead of deep burial.
Collapse
Affiliation(s)
- Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Bo Xia
- Sichuan Daheng Poultry Breeding Co., Ltd, Chengdu, China
| | - Mohan Qiu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Han Peng
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Huarui Du
- Sichuan Daheng Poultry Breeding Co., Ltd, Chengdu, China
| | - Qingyun Li
- Sichuan Daheng Poultry Breeding Co., Ltd, Chengdu, China
| | - Zengrong Zhang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Chunlin Yu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| |
Collapse
|
11
|
Li H, Wang X, Tan L, Li Q, Zhang C, Wei X, Wang Q, Zheng X, Xu Y. Coconut shell and its biochar as fertilizer amendment applied with organic fertilizer: Efficacy and course of actions on eliminating antibiotic resistance genes in agricultural soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129322. [PMID: 35728320 DOI: 10.1016/j.jhazmat.2022.129322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Biomass amendments have numerous benefits in reducing antibiotic resistance genes (ARGs) in the soil environment. However, there are debatable outcomes regarding the effect of raw biomass and its pyrolytic biochar on ARGs, and the exploration of the influence mechanism is still in infancy. Herein, we investigated the changes in soil ARGs under the organic fertilizer application with coconut shell and its biochar. The results showed that the coconut shell biochar could effectively diminish ARGs, with 61.54% reduction in target ARGs, which was higher than that adding raw coconut shells (p < 0.05). Structural equation modeling indicated that ARGs were significantly affected by changes in environmental factors, mainly by modulating bacterial communities. Neutral community model and network analysis demonstrated that the coconut shell biochar can restrict the species dispersal, thereby mitigating the spread of ARGs. Also, coconut shell biochar exhibited strong adsorption, with a large specific surface area (476.66 m2/g) and pores (pore diameter approximately 1.207 nm, total pore volume: 0.2451 m3/g), which markedly enhanced soil heterogeneity that created a barrier to limit the resistant bacteria proliferation and ARGs propagation. The outcome gives an approach to control the development of ARGs after organic fertilizer application into soil.
Collapse
Affiliation(s)
- Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qian Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Chunxue Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiang Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
12
|
Bilal M, Diarra M, Islam MR, Lepp D, Mastin Wood ER, Topp E, Bittman S, Zhao X. Effects of litter from antimicrobial-fed broiler chickens on soil bacterial community structure and diversity. Can J Microbiol 2022; 68:643-653. [PMID: 35944283 DOI: 10.1139/cjm-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined changes in soil bacterial community composition and diversity in response to fertilization with litter from chickens fed diet with no antibiotics, bambermycin, penicillin, bacitracin, salinomycin, and mix of salinomycin and bacitracin. Litter was applied to 24 agricultural-plots. Non-fertilized plots were used as a negative control. Soil samples collected from the studied plots were used to quantify Escherichia coli by plate counts, and Clostridium perfringens by qPCR. The 16S-rRNA gene sequencing was performed for microbiota analysis. Following litter application in December, the population size of E.coli was 5.4 log CFU/g, however, regardless of treatments the result revealed 5.2 and 1.4 log CFU/g of E.coli in soil sampled in January and March, respectively. Fertilization with antibiotic treated litter increased (P < 0.05) the relative abundance of Proteobacteria, Actinobacteria and Firmicutes in soil, but decreased Acidobacteria and Verrucomicrobia groups. The alpha-diversity parameters were higher (P < 0.05) in non-fertilized soil compared to the fertilized ones, suggesting that litter application was a major factor in shaping the soil bacterial communities. These results may help develop efficient litter management strategies like composting, autoclaving, or anaerobic digestion of poultry litter before application to land for preservation of soil health and crop productivity.
Collapse
Affiliation(s)
- Muhammad Bilal
- McGill University, Deptartment of Animal Science, Montreal, Quebec, Canada;
| | - Moussa Diarra
- Agriculture and Agri-Food Canada (AAFC), Guelph, Canada;
| | | | - Dion Lepp
- Agriculture and Agri-Food Canada, Guelph, Canada;
| | | | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada;
| | - Shabtai Bittman
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada;
| | - Xin Zhao
- McGill University, Deptartment of Animal Science, Montreal, Quebec, Canada;
| |
Collapse
|
13
|
Werner KA, Schneider D, Poehlein A, Diederich N, Feyen L, Axtmann K, Hübner T, Brüggemann N, Prost K, Daniel R, Grohmann E. Metagenomic Insights Into the Changes of Antibiotic Resistance and Pathogenicity Factor Pools Upon Thermophilic Composting of Human Excreta. Front Microbiol 2022; 13:826071. [PMID: 35432262 PMCID: PMC9009411 DOI: 10.3389/fmicb.2022.826071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 01/12/2023] Open
Abstract
In times of climate change, practicing a form of sustainable, climate-resilient and productive agriculture is of primordial importance. Compost could be one form of sustainable fertilizer, which is increasing humus, water holding capacity, and nutrient contents of soils. It could thereby strengthen agriculture toward the adverse effects of climate change, especially when additionally combined with biochar. To get access to sufficient amounts of suitable materials for composting, resources, which are currently treated as waste, such as human excreta, could be a promising option. However, the safety of the produced compost regarding human pathogens, pharmaceuticals (like antibiotics) and related resistance genes must be considered. In this context, we have investigated the effect of 140- and 154-days of thermophilic composting on the hygienization of human excreta and saw dust from dry toilets together with straw and green cuttings with and without addition of biochar. Compost samples were taken at the beginning and end of the composting process and metagenomic analysis was conducted to assess the fate of antibiotic resistance genes (ARGs) and pathogenicity factors of the microbial community over composting. Potential ARGs conferring resistance to major classes of antibiotics, such as beta-lactam antibiotics, vancomycin, the MLSB group, aminoglycosides, tetracyclines and quinolones were detected in all samples. However, relative abundance of ARGs decreased from the beginning to the end of composting. This trend was also found for genes encoding type III, type IV, and type VI secretion systems, that are involved in pathogenicity, protein effector transport into eukaryotic cells and horizontal gene transfer between bacteria, respectively. The results suggest that the occurrence of potentially pathogenic microorganisms harboring ARGs declines during thermophilic composting. Nevertheless, ARG levels did not decline below the detection limit of quantitative PCR (qPCR). Thresholds for the usage of compost regarding acceptable resistance gene levels are yet to be evaluated and defined.
Collapse
Affiliation(s)
- Katharina A. Werner
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Nina Diederich
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Lara Feyen
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
| | - Katharina Axtmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Tobias Hübner
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research GmbH—Umweltforschungszentrum Leipzig (UFZ), Leipzig, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Prost
- Institute of Bio- and Geosciences—Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Department of Microbiology, Faculty of Life Sciences and Technology, Berliner Hochschule für Technik, Berlin, Germany
- *Correspondence: Elisabeth Grohmann,
| |
Collapse
|
14
|
Scott A, Murray R, Tien YC, Topp E. Contamination of hay and haylage with enteric bacteria and selected antibiotic resistance genes following fertilization with dairy manure or biosolids. Can J Microbiol 2022; 68:249-257. [PMID: 35020524 DOI: 10.1139/cjm-2021-0326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study evaluated if enteric bacteria or antibiotic resistance genes carried in fecal amendments contaminate the hay at harvest, representing a potential route of exposure to ruminants that consume the hay. In field experiments, dairy manure was applied to a hay field for three successive growing seasons, and biosolids applied to a hay field for one growing season. Various enteric bacteria in the amendments were enumerated by viable plate count, and selected gene targets were quantified by qPCR. Key findings include the following: At harvest, hay receiving dairy manure or biosolids did not carry more viable enteric bacteria than did hay from unamended control plots. Fermentation of hay did not result in a detectable increase in viable enteric bacteria. The application of dairy manure or biosolids did result in a few gene targets being more abundant on hay at the first harvest. Fermentation of hay did result in an increase in the abundance of gene targets, but this occurred both with hay from amended and control plots. Overall, application of fecal amendments will result in an increase in the abundance of some gene targets associated with antibiotic resistance on first cut hay.
Collapse
Affiliation(s)
- Andrew Scott
- Agriculture and Agri-Food Canada, 6337, London, Ontario, Canada;
| | - Roger Murray
- Agriculture and Agri-Food Canada, 6337, London, Ontario, Canada;
| | - Yuan-Ching Tien
- Agriculture and Agri-Food Canada, 6337, London, Ontario, Canada;
| | - Edward Topp
- Agriculture and Agri-Food Canada, 6337, London, Canada;
| |
Collapse
|