1
|
Pan QR, Ouyang YQ, Jiang HH, Ou DN, Zhong JY, Li N. Bifunctional electrode materials: Enhancing microbial fuel cell efficiency with 3D hierarchical porous Fe 3O 4/Fe-N-C structures. Bioelectrochemistry 2025; 161:108829. [PMID: 39326346 DOI: 10.1016/j.bioelechem.2024.108829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The rational development of high-performance anode and cathode electrodes for microbial fuel cells (MFCs) is crucial for enhancing MFC performance. However, complex synthesis methods and single-performance electrode materials hinder their large-scale implementation. Here, three-dimensional hierarchical porous (3DHP) Fe3O4/Fe-N-C composites were prepared via the hard template method. Notably, Fe3O4/Fe-N-C-0.04-600 demonstrated uniformly dispersed Fe3O4 nanoparticles and abundant Fe-Nx and pyridinic nitrogen, showing excellent catalytic performance for oxygen reduction reaction (ORR) with a half-wave potential (E1/2) of 0.74 V (vs. RHE), surpassing Pt/C (0.66 V vs. RHE). Moreover, Fe3O4/Fe-N-C-0.04-600 demonstrated favorable biocompatibility as an anode material, enhancing anode biomass and extracellular electron transfer efficiency. Sequencing results confirmed its promotion of electrophilic microorganisms in the anode biofilm. MFCs employing Fe3O4/Fe-N-C-0.04-600 as both anode and cathode materials achieved a maximum power density of 831.8 ± 27.7 mW m-2, enduring operation for 38 days. This study presents a novel approach for rational MFC design, emphasizing bifunctional materials capable of serving as anode materials for microorganism growth and as cathode catalysts for ORR catalysis.
Collapse
Affiliation(s)
- Qiu-Ren Pan
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Ying-Qi Ouyang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Hui-Huan Jiang
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Dong-Ni Ou
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Jun-Ying Zhong
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China
| | - Nan Li
- School of Chemistry and Chemical Engineering, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Mahmoud ME, Ibrahim GAA. Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@TiO 2 incorporated with watermelon biochar and chitosan hydrogel. Int J Biol Macromol 2023; 253:126489. [PMID: 37625740 DOI: 10.1016/j.ijbiomac.2023.126489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Biodegradable polymers, biochars and metal organic frameworks (MOFs) have manifested as top prospects for elimination of harmful pollutants. In the current study, Ti-MOF was synthesized and decorated with TiO2 nanoparticles, then embedded into watermelon peel biochar and functionalized with chitosan hydrogel to produce Ti-MOF@TiO2@WMPB@CTH. Various instruments were employed to assure the effective production of the bionanocomposite. The HR-TEM and SEM studies referred to excellent surface porosity and homogeneity of Ti-MOF@TiO2@WMPB@CTH bionanocomposite, with 51.02-74.23 nm. Based on the BET analysis, the mesoporous structure has a significant surface area of 366.04 m2 g-1 and a considerable total pore volume of 11.38 × 10-2 cm3 g-1, with a mean pore size of 12.434 nm. Removal of doxorubicin (DOX) and hexavalent chromium (Cr(VI)) was examined under various experimentations. Pseudo-second order kinetic models in addition to Langmuir isotherm offered the best fitting. Thermodynamic experiments of the two contaminants demonstrated spontaneous and endothermic interactions. After five subsequent adsorption and desorption cycles, Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated an exceptional recyclability for the elimination of DOX and Cr(VI) ions, reaching 97.96 % and 95.28 %, respectively. Finally, the newly designed Ti-MOF@TiO2@WMPB@CTH bionanocomposite demonstrated a high removing efficiency of Cr(VI) ions and DOX from samples of real water.
Collapse
Affiliation(s)
- Mohamed E Mahmoud
- Faculty of Sciences, Chemistry Department, Alexandria University, Moharem Bey, Alexandria, Egypt.
| | - Ghada A A Ibrahim
- Faculty of Education, Physics and Chemistry Department, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Dhanda A, Raj R, Sathe SM, Dubey BK, Ghangrekar MM. Graphene and biochar-based cathode catalysts for microbial fuel cell: Performance evaluation, economic comparison, environmental and future perspectives. ENVIRONMENTAL RESEARCH 2023; 231:116143. [PMID: 37187304 DOI: 10.1016/j.envres.2023.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
Microbial fuel cells (MFCs) have been the prime focus of research in recent years because of their distinctive feature of concomitantly treating and producing electricity from wastewater. Nevertheless, the electrical performance of MFCs is hindered by a protracted oxygen reduction reaction (ORR), and often a catalyst is required to boost the cathodic reactions. Conventional transition metals-based catalysts are expensive and infeasible for field-scale usage. In this regard, carbon-based electrocatalysts like waste-derived biochar and graphene are used to enhance the commercialisation prospects of MFC technology. These carbon-catalysts possess unique properties like superior electrocatalytic activity, higher surface area, and high porosity conducive to ORR. Theoretically, graphene-based cathode catalysts yield superior results than a biochar-derived catalyst, though at a higher cost. In contrast, the synthesis of waste-extracted biochar is economical; however, its ability to catalyse ORR is debatable. Therefore, this review aims to make a side-by-side techno-economic assessment of biochar and graphene-based cathode catalyst used in MFC to predict the relative performance and typical cost of power recovery. Additionally, the life cycle analysis of the graphene and biochar-based materials has been briefly discussed to comprehend the associated environmental impacts and overall sustainability of these carbo-catalysts.
Collapse
Affiliation(s)
- Anil Dhanda
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - S M Sathe
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - B K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
4
|
Iron/cobalt-decorated nitrogen-rich 3D layer-stacked porous biochar as high-performance oxygen reduction air-cathode catalyst in microbial fuel cell. Biosens Bioelectron 2023; 222:114926. [PMID: 36455373 DOI: 10.1016/j.bios.2022.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Developing low-cost and high-efficiency oxygen reduction reaction (ORR) catalysts is crucial to the commercial application of microbial fuel cell (MFC). Herein, Fe/Co-decorated nitrogen-rich three-dimensional (3D) layer-stacked porous biochar (Fe/Co-NC-x) have been synthesized from silk gel through secondary carbonization of activated carbons which firstly adsorbed metal ions. The multilayer porous structure of Fe/Co-NC-3 contributes to construction of high specific surface area (576 m2 g-1), large pore volume (1.27 cm3 g-1) and many defect structure (ID/IG = 1.004). As expected, with Fe/Co synergistic effect, Fe/Co-NC-3 exhibits excellent ORR performance through 4e- pathway with good methanol resistance. In addition, the performance of MFC using Fe/Co-NC-3 as air-cathode catalyst is more prominent with higher maximum power density (1059.62 ± 30.00 mW m-2) compared to that using NC (668.19 ± 9.84 mW m-2) and commercial Pt/C catalyst (957.33 ± 10.50 mW m-2). Therefore, Fe/Co-NC-3 should be a prospective catalyst in the practical application of fuel cells and other energy devices.
Collapse
|
5
|
Utilization Potential of Agro-industrial By-products and Waste Sources: Laccase Production in Bioreactor with Pichia pastoris. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
6
|
Benzaouak A, Touach N, Mahir H, Elhamdouni Y, Labjar N, El Hamidi A, El Mahi M, Lotfi EM, Kacimi M, Liotta LF. ZrP 2O 7 as a Cathodic Material in Single-Chamber MFC for Bioenergy Production. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3330. [PMID: 36234458 PMCID: PMC9565527 DOI: 10.3390/nano12193330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The present work is the first investigation of the electrocatalytic performances of ZrP2O7 as a cathode in a single-chamber Microbial Fuel Cell (MFC) for the conversion of chemical energy from wastewater to bioelectricity. This catalyst was prepared by a coprecipitation method, then characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), ultraviolet-visible-near-infrared spectrophotometry (UV-Vis-NIR), and cyclic voltammetry analyses. The acid-basic characteristics of the surface were probed by using 2-butanol decomposition. The conversion of 2-butanol occurs essentially through the dehydrating reaction, indicating the predominantly acidic character of the solid. The electrochemical test shows that the studied cathode material is electroactive. In addition, the ZrP2O7 in the MFC configuration exhibited high performance in terms of bioelectricity generation, giving a maximum output power density of around 449 mW m-2; moreover, it was active for wastewater treatment, reducing the chemical oxygen demand (COD) charge to 50% after three days of reaction.
Collapse
Affiliation(s)
- Abdellah Benzaouak
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Noureddine Touach
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Hanane Mahir
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Youssra Elhamdouni
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Najoua Labjar
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Adnane El Hamidi
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Mohammed El Mahi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - El Mostapha Lotfi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Mohamed Kacimi
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, via Ugo La Malfa, 153, 90146 Palermo, Italy
| |
Collapse
|
7
|
Al-Sahari M, Al-Gheethi AA, Radin Mohamed RMS, Yashni G, Vo DVN, Ismail N. Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems. CHEMOSPHERE 2022; 298:134244. [PMID: 35278440 DOI: 10.1016/j.chemosphere.2022.134244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has appeared in the late 20th century and received considerable attention over the last decade due to its multiple and unique potential in converting the substrates into electricity and valuable productions. Extensive efforts have been paid to improve the MFCs performance, leading to the publication of a massive amount of research that developed various aspects of these systems. Most of these improvements have focused on optimization parameters, which is currently inappropriate to provide an innovational developing vision for MFC systems. The convergent results in most of the previous conventional studies (12,643 studies according to the WOS database) have reduced the value of MFCs by drawing an incomplete image for the performance of the systems. Therefore, this paper aimed to provide a comprehensive comparison between the highly reliable studies that innovatively developed the MFC systems and the conventional MFCs studies. The current paper discusses the novel MFCs development history, designs, efficiency, and challenges compared to conventional MFCs. The discussion has displayed the high efficiency of the novel MFCs in removing over 90% of substrates and generating power of 800 mW m-2. The paper also analyzed the literature trends, history and suggested recommendations for future studies. This is the first paper highlighting the substantial differences between the innovative and conventional MFC systems, nominating it to be a vital reference for novel MFCs studies in the future.
Collapse
Affiliation(s)
- Mohammed Al-Sahari
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Adel Ali Al-Gheethi
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - Radin Maya Saphira Radin Mohamed
- Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja, 86400, Johor, Malaysia.
| | - G Yashni
- School of Applied Sciences, Faculty of Engineering, Science and Technology, Nilai University, Malaysia.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Norli Ismail
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia
| |
Collapse
|
8
|
Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132414041] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given that the problem of contaminated soil continues to grow, the development of effective control and remediation measures has become imperative, especially for heavy-metal-contaminated soil. Biochar and modified biochar are eco-friendly and cost-effective remediation materials that are widely used in the remediation of contaminated soil. This review provides an overview of the different raw materials used in the preparation of biochar as well as the modification of biochar using various synthesis methods, highlighting their differences and providing recommendations for biochar and modified biochar as applied toward ameliorating pollution in soil contaminated by heavy metals. We also explore the effects of the physicochemical properties of raw materials, pyrolysis temperature, additives, and modification methods on the properties of the resulting biochar and modified biochar, and systematically present the types of soil and operating factors for repair. Moreover, the mechanisms involved in remediation of heavy-metal-contaminated soil by biochar and modified biochar are outlined in detail, and include adsorption, complexation, precipitation, ion exchange, and electrostatic attractions. Finally, the corresponding monitoring technologies after remediation are illustrated. Future directions for studies on biochar and modified biochar in the remediation of contaminated soil are also proposed to support the development of green environmental protection materials, simple preparation methods, and effective follow-up monitoring techniques.
Collapse
|