1
|
Liao J, Ding C, Jiang L, Shi J, Wang Q, Wang Z, Wang L. Construction of montmorillonite-based materials for highly efficient uranium removal: adsorption behaviors and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135741. [PMID: 39259997 DOI: 10.1016/j.jhazmat.2024.135741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this work, Fe3+-doped and -NH2-grafted montmorillonite-based material was prepared and the adsorption ability for uranium(VI) was verified. The microstructure and pore size distribution of the montmorillonite-based material were investigated by N2 adsorption-desorption analyzer and scanning electron microscopy. The surface groups and composition were analyzed by Fourier transform infrared spectrometer, X-ray photoelectron spectrometer and X-ray diffractometer, which proved the successful doping of Fe3+ and grafting of -NH2. In the adsorption study, the adsorption reached equilibrium within 100 min with a maximum adsorption capacity of 661.2 mg/g at pH = 6 and a high adsorption efficiency of 99.4 % at low uranium(VI) concentration (pH = 6, m/V = 0.5 g/L). The mechanism study showed that the strong synergistic complexation of -OH and -NH2 for uranium(VI) played a decisive role in the adsorption process and the transport function of interlayer bound water could also enhance the adsorption probability of uranium(VI) species. These results were far superior to other reported similar materials, which proved that the Fe3+-doped and -NH2-grafted montmorillonite-based material possessed an extremely high application potential in adsorption, providing a new route for the modification of montmorillonite.
Collapse
Affiliation(s)
- Jun Liao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China.
| | - CongCong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Liang Jiang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Junping Shi
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Qiuyi Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Zihao Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Lielin Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China.
| |
Collapse
|
2
|
Turkeltaub T, Weisbrod N, Zavarin M, Chang E, Kersting AB, Teutsch N, Roded S, Tran EL, Geller Y, Gerera Y, Klein-BenDavid O. Radionuclide transport in fractured chalk under abrupt changes in salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168636. [PMID: 37981163 DOI: 10.1016/j.scitotenv.2023.168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Internationally, it has been agreed that geologic repositories for spent fuel and radioactive waste are considered the internationally agreed upon solution for intermediate and long-term disposal. In countries where traditional nuclear waste repository host rocks (e.g., clay, salt, granite) are not available, other low permeability lithologies must be studied. Here, chalk is considered to determine its viability for disposal. Despite chalk's low bulk permeability, it may contain fracture networks that can facilitate radionuclide transport. In arid areas, groundwater salinity may change seasonally due to the mixing between brackish groundwater and fresh meteoric water. Such salinity changes may impact the radionuclides' mobility. In this study, radioactive U(VI) and radionuclide simulant tracers (Sr, Ce and Re) were injected into a naturally fractured chalk core. The mobility of tracers was investigated under abrupt salinity variations. Two solutions were used: a low ionic strength (IS) artificial rainwater (ARW; IS ∼0.002) and a high IS artificial groundwater (AGW; IS ∼0.2). During the experiments, the tracers were added to ARW, then the carrier was changed to AGW, and vice versa. Ce was mobile only in colloidal form, while Re was transported as a conservative tracer. Both Re and Ce demonstrated no change in mobility due to salinity changes. In contrast, U and Sr showed increased mobility when AGW was introduced and decreased mobility when ARW was introduced into the core. These experimental results, supported by reactive transport modeling, suggest that saline groundwater solutions promote U and Sr release via ion-exchange and enhance their migration in fractured chalk. The study emphasizes the impact of salinity variations near spent fuel repositories and their possible impact on radionuclide mobility.
Collapse
Affiliation(s)
- Tuvia Turkeltaub
- The Zuckerburg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel.
| | - Noam Weisbrod
- The Zuckerburg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550, USA
| | - Elliot Chang
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550, USA
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550, USA
| | - Nadya Teutsch
- Geological Survey of Israel, 32 Yeshayahu Leibowitz St., Jerusalem 9371234, Israel
| | - Sari Roded
- The Zuckerburg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Emily L Tran
- The Zuckerburg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel; Now at Shamir Research Institute, University of Haifa, Qatsrin 1290000, Israel
| | - Yehonatan Geller
- Geological and Environmental Science Department, Ben Gurion University of the Negev, Beersheva 8410501, Israel
| | - Yarden Gerera
- The Zuckerburg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion 8499000, Israel
| | - Ofra Klein-BenDavid
- Nuclear Research Center of the Negev, Negev, P.O. Box 9001, Beersheva 8419001, Israel; Geological and Environmental Science Department, Ben Gurion University of the Negev, Beersheva 8410501, Israel
| |
Collapse
|
3
|
Demnitz M, Schymura S, Neumann J, Schmidt M, Schäfer T, Stumpf T, Müller K. Mechanistic understanding of Curium(III) sorption on natural K-feldspar surfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156920. [PMID: 35753478 DOI: 10.1016/j.scitotenv.2022.156920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
To assess a reliable safety case for future deep underground repositories for highly active nuclear waste the retention of radionuclides by the surrounding host rock must be understood comprehensively. Retention is influenced by several parameters such as mineral heterogeneity and surface roughness, as well as pore water chemistry (e.g., pH). However, the interplay between those parameters is not yet well understood. Therefore, we present a correlative spectromicroscopic approach to investigate sorption of the actinide Cm(III) on: 1) bulk K-feldspar crystals to determine the effect of surface roughness and pH (5.5 and 6.9) and 2) a large feldspar grain as part of a complex crystalline rock system to observe how sorption is influenced by the surrounding heterogeneous mineralogy. Our findings show that rougher K-feldspar surfaces exhibit increased Cm(III) uptake and stronger complexation. Similarly, increasing pH leads to higher surface loading and stronger Cm(III) binding to the surface. Within a heterogeneous mineralogical system sorption is further affected by neighboring mineral dissolution and competitive sorption between mineral phases such as mica and feldspar. The obtained results express a need for investigating relevant processes on multiple scales of dimension and complexity to better understand trivalent radionuclide retention by a potential repository host rock.
Collapse
Affiliation(s)
- Maximilian Demnitz
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Stefan Schymura
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Research Site Leipzig, Permoserstraße 15 04318 Leipzig, Germany.
| | - Julia Neumann
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Moritz Schmidt
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Thorsten Schäfer
- Friedrich-Schiller-Universität Jena, Institute for Geosciences, Burgweg 11, 07749 Jena, Germany.
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Katharina Müller
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
4
|
Philipp T, Huittinen N, Shams Aldin Azzam S, Stohr R, Stietz J, Reich T, Schmeide K. Effect of Ca(II) on U(VI) and Np(VI) retention on Ca-bentonite and clay minerals at hyperalkaline conditions - New insights from batch sorption experiments and luminescence spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156837. [PMID: 35750178 DOI: 10.1016/j.scitotenv.2022.156837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
In deep geological repositories for radioactive waste, interactions of radionuclides with mineral surfaces occur under complex geochemical conditions involving complex solution compositions and high pH resulting from degradation of cementitious geo-engineered barriers. Ca2+ cations have been hypothesized to play an important role as mediators for the retention of U(VI) on Ca-bentonite at (hyper)alkaline conditions, despite the anionic character of both the mineral surface and the aqueous uranyl species. To gain deeper insight into this sorption process, the effect of Ca2+ on U(VI) and Np(VI) retention on alumosilicate minerals has been comprehensively evaluated, using batch sorption experiments and time-resolved laser-induced luminescence spectroscopy (TRLFS). Sorption experiments with Ca2+ or Sr2+ and zeta potential measurements showed that the alkaline earth metals sorb strongly onto Ca-bentonite at pH 8-13, leading to a partial compensation of the negative surface charge, thereby generating potential sorption sites for anionic actinyl species. U(VI) and Np(VI) sorption experiments in the absence and presence of Ca2+ or Sr2+ confirmed that these cations strongly enhance radionuclide retention on kaolinite and muscovite at pH ≥ 10. Concerning the underlying retention mechanisms, site-selective TRLFS provided spectroscopic proof for two dominating U(VI) species at the alumosilicate surfaces: (i) A ternary U(VI) complex, where U(VI) is bound to the surface via bridging Ca cations with the configuration surface ≡ Ca - OH - U(VI) and, (ii) U(VI) sorption into the interlayer space of calcium (aluminum) silicate hydrates (C-(A-)S-H), which form as secondary phases in the presence of Ca due to partial dissolution of alumosilicates under hyperalkaline conditions. Consequently, the present study confirms that alkaline earth elements, which are ubiquitous in geologic systems, enable strong retention of hexavalent actinides on clay minerals under hyperalkaline repository conditions.
Collapse
Affiliation(s)
- Thimo Philipp
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Nina Huittinen
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Salim Shams Aldin Azzam
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Stohr
- Johannes Gutenberg-Universität Mainz, Department of Chemistry, Fritz Strassmann Weg 2, 55128 Mainz, Germany
| | - Janina Stietz
- Johannes Gutenberg-Universität Mainz, Department of Chemistry, Fritz Strassmann Weg 2, 55128 Mainz, Germany
| | - Tobias Reich
- Johannes Gutenberg-Universität Mainz, Department of Chemistry, Fritz Strassmann Weg 2, 55128 Mainz, Germany
| | - Katja Schmeide
- Helmholtz-Zentrum Dresden - Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
5
|
Noli F, Dafnomili A, Sarafidis G, Dendrinou-Samara C, Pliatsikas N, Kapnisti M. Uranium and Thorium water decontamination via novel coated Cu-based nanoparticles; the role of chemistry and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156050. [PMID: 35598664 DOI: 10.1016/j.scitotenv.2022.156050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The removal of radioactive contaminants from aquifers is a matter of great concern. In this paper, coated copper-based nanoparticles (Cu-based NPs) were investigated as sorbent materials to remove uranium and thorium from low-level wastes, and especially from water, considering the influences of temperature, time, concentration, and pH. Cu-based NPs were derived through a hydrothermal synthesis from copper nitrate degradation in the presence of the bifunctional with COOH-terminated PEG, TEG as well as PEG 8000. The characterization was undertaken using XRD, TEM, TG/DTG, FTIR, and SEM-EDS. Isotherm models such as Langmuir and Freundlich were applied, while kinetic data were successfully reproduced by the pseudo-second-order equation and thermodynamic parameters were calculated. To investigate the removal mechanisms, UV-fluorescence and X-ray photoelectron spectroscopy were used. In the case of uranium, the predominant mechanism includes the formation of surface complexes, followed by extensive reduction (65%) of U(VI) to less soluble U(IV) while in the case of thorium, surface precipitation dominates. Copper nanoparticles exhibited significant U(VI) uptake capacity resulting in a decrease of the U-concentration below the acceptable limit of 30 μg/L and can be successfully applied in water treatment technology.
Collapse
Affiliation(s)
- Fotini Noli
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Argyro Dafnomili
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgios Sarafidis
- Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | | - Nikolaos Pliatsikas
- Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Kapnisti
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
6
|
Characterization of the remediation of chromium ion contamination with bentonite by terahertz time-domain spectroscopy. Sci Rep 2022; 12:11149. [PMID: 35778469 PMCID: PMC9249910 DOI: 10.1038/s41598-022-15182-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metal pollution of agricultural and urban soils limits economic progress in the rapidly developing society. Terahertz technology is applied to detect heavy metal pollutants under existence of multiple pathways of their dissemination. In this study, terahertz time-domain spectroscopy (THz-TDS) is employed as an advanced probing technique in combination with traditional detecting methods to measure the adsorption ability of trivalent chromium ions on bentonite. The concentration of chromium ions and the weight of bentonite are known to influence on the adsorption capacity of the latter. It is tested here by both qualitative and quantitative measurements of two mentioned parameters. The adsorption process of chromium ions by bentonite is monitored using THz-TDS. The adsorptions signal from samples at 0.5 THz gradually increases with the increase of bentonite weight or chromium ion concentration. It would appear to indicate that terahertz could be used for quantitative detection of metal ions. Secondly, the ratios of results obtained by inductively coupled plasma mass spectrometry (ICP-MS) and the THz-TDS ones are stabilized at 0.105 ± 0.014 as the bentonite weight or chromium ion concentration increase. Such finding confirms that terahertz technology can be used for the quantitative detection of metal ions. Using the relationship between the ICP-MS test results and the THz-TDS ones, the amplitude value of bentonite is obtained to be 13.925 at the concentration of chromium ions of 0.05 mol/L, the mass of bentonite sample involved in adsorption of 1.5 g, and the detection frequency in THz-TDS measurements of 0.5 THz. The adsorption coefficient of bentonite is calculated to be 1.44%. Increase of the chromium ion concentration to 0.2 mol/L, and the mass of bentonite involved in adsorption to 3 g leads to the increase of the amplitude corresponding to adsorbed chromium ions to about 19.463, and the adsorption coefficient to about 2.1%. Obtained results demonstrate that terahertz technology is promising to meet the ever-increasing requirements in mineral analyses for rapid detection of chemical contaminants and measurement of the adsorption efficiencies of materials.
Collapse
|