1
|
Parrilla-Lahoz S, Zambrano MC, Pawlak JJ, Venditti RA, Ramirez Reina T, Odriozola JA, Duyar MS. Textile microfibers valorization by catalytic hydrothermal carbonization toward high-tech carbonaceous materials. iScience 2024; 27:111427. [PMID: 39697596 PMCID: PMC11652939 DOI: 10.1016/j.isci.2024.111427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.28 million tons of microfibers per year) into the circular economy by catalytic upcycling to carbon nanomaterials. Herein, we show that cotton and polyester can be converted to filamentous solid carbon nanostructures using a Fe-Ni catalyst during HTC. Results revealed the conversion of microfibers into amorphous and graphitic carbon structures, including carbon nanotubes from a cotton/polyethylene terephthalate (PET) mixture. HTC at 200°C and 22 bar pressure produced graphitic carbon in all samples, demonstrating that mixed microfiber wastes can be valorized to provide potentially valuable carbon structures by modifying reaction parameters and catalyst formulation.
Collapse
Affiliation(s)
- Silvia Parrilla-Lahoz
- School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK
- Inorganic Chemistry Department & Materials Science Institute, University of Seville-CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Marielis C. Zambrano
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Joel J. Pawlak
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Richard A. Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695-8005, USA
| | - Tomas Ramirez Reina
- School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK
- Inorganic Chemistry Department & Materials Science Institute, University of Seville-CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Jose Antonio Odriozola
- Inorganic Chemistry Department & Materials Science Institute, University of Seville-CSIC, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Melis S. Duyar
- School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK
| |
Collapse
|
2
|
González-Arias J, Torres-Sempere G, González-Castaño M, Baena-Moreno FM, Reina TR. Hydrochar and synthetic natural gas co-production for a full circular economy implementation via hydrothermal carbonization and methanation: An economic approach. J Environ Sci (China) 2024; 140:69-78. [PMID: 38331516 DOI: 10.1016/j.jes.2023.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 02/10/2024]
Abstract
Herein we study the economic performance of hydrochar and synthetic natural gas co-production from olive tree pruning. The process entails a combination of hydrothermal carbonization and methanation. In a previous work, we evidenced that standalone hydrochar production via HTC results unprofitable. Hence, we propose a step forward on the process design by implementing a methanation, adding value to the gas effluent in an attempt to boost the overall process techno-economic aspects. Three different plant capacities were analyzed (312.5, 625 and 1250 kg/hr). The baseline scenarios showed that, under the current circumstances, our circular economy strategy in unprofitable. An analysis of the revenues shows that hydrochar selling price have a high impact on NPV and subsidies for renewable coal production could help to boost the profitability of the process. On the contrary, the analysis for natural gas prices reveals that prices 8 times higher than the current ones in Spain must be achieved to reach profitability. This seems unlikely even under the presence of a strong subsidy scheme. The costs analysis suggests that a remarkable electricity cost reduction or electricity consumption of the HTC stage could be a potential strategy to reach profitability scenarios. Furthermore, significant reduction of green hydrogen production costs is deemed instrumental to improve the economic performance of the process. These results show the formidable techno-economic challenge that our society faces in the path towards circular economy societies.
Collapse
Affiliation(s)
- Judith González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain.
| | - Guillermo Torres-Sempere
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - Miriam González-Castaño
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - Francisco M Baena-Moreno
- Materials Sciences Institute (ICMSE), CSIC-University of Seville, Seville, Spain; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE 412 96, Sweden
| | - Tomás R Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| |
Collapse
|
3
|
Ipiales RP, Sarrion A, Diaz E, de la Rubia MA, Diaz-Portuondo E, Coronella CJ, Mohedano AF. Swine manure management by hydrothermal carbonization: Comparative study of batch and continuous operation. ENVIRONMENTAL RESEARCH 2024; 245:118062. [PMID: 38157959 DOI: 10.1016/j.envres.2023.118062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Hydrothermal carbonization (HTC) is considered a promising technology for biomass waste management without pre-drying. This study explores the potential for swine manure management by comparing batch and continuous processes, emphasizing the benefits of the continuous mode, particularly for its potential full-scale application. The continuous process at low temperature (180 °C) resulted in a hydrochar with a lower degree of carbonization compared to the batch process, but similar characteristics were found in both hydrochars at higher operating temperatures (230-250 °C), such as C content (∼ 52 wt%), fixed carbon (∼ 24 wt%) and higher calorific value (21 MJ kg-1). Thermogravimetric and combustion analyses showed that hydrochars exhibited characteristics suitable as solid biofuels for industrial use. The process water showed a high content of organic matter as soluble chemical oxygen demand (7-22 g L-1) and total organic carbon (4-10 g L-1), although a high amount of refractory species such as N- and O-containing long aromatic compounds were detected in the process water from the batch process, while the process water from the continuous process presented more easily biodegradable compounds such as acids and alcohols, among others. The longer time required to reach operating temperature in the case of the batch system (longer heating time to reach operating temperature) resulted in lower H/C and O/C ratios compared to hydrochar from the continuous process. This indicates that the dehydration and decarboxylation reactions of the feedstock play a more important role in the batch process. This study shows the efficiency of the continuous process to obtain carbonaceous materials suitable for use as biofuel, providing a solution for swine manure management.
Collapse
Affiliation(s)
- R P Ipiales
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain; Arquimea-Agrotech, 28400, Collado Villalba, Madrid, Spain
| | - A Sarrion
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - E Diaz
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - M A de la Rubia
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Charles J Coronella
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, 89557, Nevada, United States
| | - A F Mohedano
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Vanapalli KR, Bhar R, Maity SK, Dubey BK, Kumar S, Kumar V. Life cycle assessment of fermentative production of lactic acid from bread waste based on process modelling using pinch technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167051. [PMID: 37717758 DOI: 10.1016/j.scitotenv.2023.167051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Bread waste (BW), a rich source of fermentable carbohydrates, has the potential to be a sustainable feedstock for the production of lactic acid (LA). In our previous work, the LA concentration of 155.4 g/L was achieved from BW via enzymatic hydrolysis, which was followed by a techno-economic analysis of the bioprocess. This work evaluates the relative environmental performance of two scenarios - neutral and low pH fermentation processes for polymer-grade LA production from BW using a cradle-to-gate life cycle assessment (LCA). The LCA was based on an industrial-scale biorefinery process handling 100 metric tons BW per day modelled using Aspen Plus. The LCA results depicted that wastewater from anaerobic digestion (AD) (42.3-51 %) and cooling water utility (34.6-39.5 %), majorly from esterification, were the critical environmental hotspots for LA production. Low pH fermentation yielded the best results compared to neutral pH fermentation, with 11.4-11.5 % reduction in the overall environmental footprint. Moreover, process integration by pinch technology, which enhanced thermal efficiency and heat recovery within the process, led to a further reduction in the impacts by 7.2-7.34 %. Scenario and sensitivity analyses depicted that substituting ultrapure water with completely softened water and sustainable management of AD wastewater could further improve the environmental performance of the processes.
Collapse
Affiliation(s)
- Kumar Raja Vanapalli
- Department of Civil Engineering, National Institute of Technology, Mizoram, Aizawl, Mizoram 796012, India
| | - Rajarshi Bhar
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sunil K Maity
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | - Sandeep Kumar
- Department of Civil & Environmental Engineering, Old Dominion University, Norfolk, VA 23529, United States
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK; Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India; C-Source Renewables Limited, Summit House, 4 - 5 Mitchell Street, Edinburgh EH6 7BD, UK.
| |
Collapse
|
5
|
He J, Xia S, Li W, Deng J, Lin Q, Zhang L. Resource recovery and valorization of food wastewater for sustainable development: An overview of current approaches. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119118. [PMID: 37769472 DOI: 10.1016/j.jenvman.2023.119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
The food processing industry is one of the world's largest consumers of potable water. Agri-food wastewater systems consume about 70% of the world's fresh water and cause at least 80% of deforestation. Food wastewater is characterized by complex composition, a wide range of pollutants, and fluctuating water quality, which can cause huge environmental pollution problems if discharged directly. In recent years, food wastewater has attracted considerable attention as it is considered to have great prospects for resource recovery and reuse due to its rich residues of nutrients and low levels of harmful substances. This review explored and compared the sources and characteristics of different types of food wastewater and methods of wastewater treatment. Particular attention was paid to the different methods of resource recovery and reuse of food wastewater. The diversity of raw materials in the food industry leads to different compositional characteristics of wastewater, which determine the choice and efficiency of wastewater treatment methods. Physicochemical methods, and biological methods alone or in combination have been used for the efficient treatment of food wastewater. Current approaches for recycling and reuse of food wastewater include culture substrates, agricultural irrigation, and bio-organic fertilizers, recovery of high-value products such as proteins, lipids, biopolymers, and bioenergy to alleviate the energy crisis. Food wastewater is a promising substrate for resource recovery and reuse, and its valorization meets the current international policy requirements regarding food waste and environment protection, follows the development trend of the food industry, and is also conducive to energy conservation, emission reduction, and economic development. However, more innovative biotechnologies are necessary to advance the effectiveness of food wastewater treatment and the extent of resource recovery and valorization.
Collapse
Affiliation(s)
- JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - SuXuan Xia
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Lin Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
6
|
Periyavaram SR, K B, Uppala L, Reddy PHP. Hydrothermal carbonization of food waste: Process parameters optimization and biomethane potential evaluation of process water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119132. [PMID: 37778071 DOI: 10.1016/j.jenvman.2023.119132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
Food waste (FW) is one of the major biomasses produced in large quantities in urban areas, which contributes to more than one-third of global greenhouse gas emissions. FW must be properly managed to minimize its environmental consequences. Hydrothermal carbonization (HTC) of FW is a promising technology compared to conventional methods. The objective of the present study is to maximize the mass yield (MY), higher heating value (HHV) and energy yield (EY) of FW by optimizing the operational variables of HTC process. Additionally, process water generated during HTC of FW under optimal conditions was evaluated for methane yield using anaerobic digestion. To optimize the HTC process, three operational variables, including solid-to-liquid (S/L) ratio, temperature, and reaction time, were manipulated using response surface methodology (RSM). According to RSM studies, the optimum operating conditions are 198.5 °C for 150 min with a 0.2 S/L ratio, resulting in MY, HHV and EY as 62.5%, 21.24 MJ/kg and 81.71%, respectively. Proximate and elemental analysis for the hydrochars synthesized at various operating conditions reveals that the temperature and reaction time have a significant impact on fixed carbon and carbon percentage. The anaerobic digestion results showed that the combination of process water and hydrochar, yielded a maximum cumulative methane production of 298.5 ± 16.34 mL/g COD. To mimic methane production, the modified Gompertz model was utilized. Thus, this finding contributes towards the commercialization of the HTC process to produce solid fuel (hydrochar) and provides a way to find an alternative energy source that enhances the HTC process and tackles the problem of process water disposal.
Collapse
Affiliation(s)
| | - Bella K
- Department of Civil Engineering, National Institute of Technology, Warangal, India
| | - Lavakumar Uppala
- Department of Civil Engineering, National Institute of Technology, Warangal, India
| | - P Hari Prasad Reddy
- Department of Civil Engineering, National Institute of Technology, Warangal, India.
| |
Collapse
|
7
|
Velvizhi G, Jacqueline PJ, Shetti NP, K L, Mohanakrishna G, Aminabhavi TM. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118527. [PMID: 37429092 DOI: 10.1016/j.jenvman.2023.118527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Sustainable technologies pave the way to address future energy demand by converting lignocellulosic biomass into fuels, carbon-neutral materials, and chemicals which might replace fossil fuels. Thermochemical and biochemical technologies are conventional methods that convert biomass into value-added products. To enhance biofuel production, the existing technologies should be upgraded using advanced processes. In this regard, the present review explores the advanced technologies of thermochemical processes such as plasma technology, hydrothermal treatment, microwave-based processing, microbial-catalyzed electrochemical systems, etc. Advanced biochemical technologies such as synthetic metabolic engineering and genomic engineering have led to the development of an effective strategy to produce biofuels. The microwave-plasma-based technique increases the biofuel conversion efficiency by 97% and the genetic engineering strains increase the sugar production by 40%, inferring that the advanced technologies enhances the efficiency. So understanding these processes leads to low-carbon technologies which can solve the global issues on energy security, the greenhouse gases emission, and global warming.
Collapse
Affiliation(s)
- G Velvizhi
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| | - P Jennita Jacqueline
- CO(2) Research and Green Technology Centre, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India; School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Latha K
- Department of Mathematics, Easwari Engineering College, Chennai, 600 089, Tamil Nadu, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, Karnataka, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| |
Collapse
|
8
|
Ipiales RP, Mohedano AF, Diaz-Portuondo E, Diaz E, de la Rubia MA. Co-hydrothermal carbonization of swine manure and lignocellulosic waste: A new strategy for the integral valorization of biomass wastes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:267-275. [PMID: 37481937 DOI: 10.1016/j.wasman.2023.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Co-hydrothermal carbonization (co-HTC) is a promising strategy to improve hydrothermal carbonization (HTC) of low-quality wastes. HTC of swine manure (SM), with high N (2.9 wt%), S (0.7 wt%) and ash (22.6 wt%) contents, as well as low C (35.6 wt%) and higher heating value (HHV; 14.3 MJ kg-1), resulted in a hydrochar with unsuitable characteristics as a solid fuel. Co-HTC of SM and garden and park waste (GPW) improved hydrochar properties (C content (43 - 48 wt%) and HHV (18 - 20 MJ kg-1), and decreased N (∼2 wt%), S (<0.3 wt%) and ash (<15 wt%) content. A high GPW ratio (>50 wt%) during co-HTC resulted in a hydrochar similar to that obtained from GPW. The co-HTC increased nutrient migration to the process water, which allowed the precipitation of salt with high P (7.8 wt%) and negligible heavy metal content. Anaerobic digestion of co-HTC process water allowed high organic matter removal (up to 65%), and methane production (315 - 325 mL CH4 g-1CODadded). Gross energy recovery by HTC and anaerobic digestion was 5 - 6-fold higher than anaerobic treatment of feedstocks. Therefore, co-HTC of SM and GPW with a ratio > 50% GPW proved to be a suitable approach to valorize and manage SM and obtain value-added products (hydrochar, mineral fertilizer and methane).
Collapse
Affiliation(s)
- R P Ipiales
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Arquimea-Agrotech, 28400 Collado Villalba, Madrid, Spain
| | - A F Mohedano
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | - E Diaz
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - M A de la Rubia
- Chemical Engineering Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
9
|
Hydrothermal Conversion of Food Waste to Carbonaceous Solid Fuel-A Review of Recent Developments. Foods 2022; 11:foods11244036. [PMID: 36553775 PMCID: PMC9778180 DOI: 10.3390/foods11244036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
This review critically discussed recent developments in hydrothermal carbonization (HTC) of food waste and its valorization to solid fuel. Food waste properties and fundamentals of the HTC reactor were also covered. The review further discussed the effect of temperature, contact time, pressure, water-biomass ratio, and heating rate on the HTC of food waste on the physiochemical properties of hydrochar. Literature review of the properties of the hydrochar produced from food waste in different studies shows that it possesses elemental, proximate, and energy properties that are comparable to sub-bituminous coal and may be used directly as fuel or co-combusted with coal. This work conclusively identified the existing research gaps and provided recommendation for future investigations.
Collapse
|
10
|
Li Z, Niu S, Liu J, Wang Y. Solid fuel production from co-hydrothermal carbonization of polyvinyl chloride and corncob: Higher dechlorination efficiency and process water recycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157082. [PMID: 35780902 DOI: 10.1016/j.scitotenv.2022.157082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The hydrothermal carbonization (HTC) of polyvinyl chloride (PVC) and wet herbal agricultural wastes for solid fuel production remains bleak economics and sustainability because of high chloride residual, wastewater burden and low production capacity. In this study, the HTC dechlorination was investigated using the first-order reaction kinetic analysis. We found that the co-hydrothermal carbonization (co-HTC) of PVC and the typical biomass (corncob) achieved a staggering drop of dechlorination activation energy from 189.95 kJ/mol to 110.04 kJ/mol. The co-HTC process achieved rapid dechlorination and carbonization due to synergistic effect, to suppress the chlorine content in bituminous-coal-like hydrochar less than 0.05 %. The process wastewater (process water) from co-HTC was recycled four times to evaluate the reusability and chemical evolution. The organics in co-HTC environment enhanced the carbonization which was confirmed by the improved heating value (30.06 to 32.42 MJ·kg-1), hydrochar yield (33.33 % to 36.47 %) and energy recovery efficiency (57.73 % to 68.13 %). The Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) evidenced the process water recirculation maintained high chloride removal. Moreover, the possible formation pathways of two kinds of hydrochars were discussed through the chemical composition of the aqueous phase and the characteristic structures of hydrochar. The co-HTC and process water recycling strategies provide a more promising prospect to convert PVC and biomass wastes into solid fuels.
Collapse
Affiliation(s)
- Zhaoyang Li
- School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Shengli Niu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China.
| | - Jiangwei Liu
- School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Yongzheng Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
| |
Collapse
|
11
|
He M, Cao Y, Xu Z, You S, Ruan R, Gao B, Wong KH, Tsang DCW. Process water recirculation for catalytic hydrothermal carbonization of anaerobic digestate: Water-Energy-Nutrient Nexus. BIORESOURCE TECHNOLOGY 2022; 361:127694. [PMID: 35905882 DOI: 10.1016/j.biortech.2022.127694] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The process water (PW) from acid-catalyzed hydrothermal carbonization (HTC) is still an environmental burden due to the enriched organics, nutrients, and salts. This study proposed a novel strategy to valorize food waste digestate into multifunctional hydrochar by recirculating the PW in the HCl-catalyzed HTC process. The produced multifunctional hydrochar could be utilized as a high-quality solid fuel with HHV of 27.9 MJ kg-1 (hydrochar without PW recirculation) and a slow-release fertilizer by converting the complex Ca and P compounds from the food waste digestate into a Ca-P deposit (hydroxyapatite) with more than a 93 % P recovery rate (hydrochar with PW recirculation). Adding fresh HCl in the HTC PW recirculation system only displayed a marginal catalytic impact on the hydrochar properties after two cycles of recirculation. This study demonstrated the importance of inherent Ca in the feedstocks and the dual role of HCl in the HTC with PW recirculation.
Collapse
Affiliation(s)
- Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville FL 32611, USA
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Effects of Bioliquid Recirculation on Hydrothermal Carbonization of Lignocellulosic Biomass. ENERGIES 2022. [DOI: 10.3390/en15134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The characteristics of bioliquid produced through the hydrothermal carbonization (HTC) of wood wastes and the effects of recirculation on hydrochar production were analyzed. The organic acids and total organic carbon of bioliquid increased with progressive recirculation, whereas intermediate byproducts decreased. Hydrochar production by bioliquid recirculation increased mass yield, carbon content, caloric value, and energy yield of the former, while improving its quality as a solid refuse fuel. We concluded that bioliquid recirculation promoted HTC, as demonstrated by Fourier-transform infrared spectroscopy. Furthermore, contrary to predictions, a relatively constant quantity of bioliquid was generated in each step, indicating that its continuous reuse is feasible. Therefore, bioliquid recirculation can improve hydrochar production while simultaneously mitigating the environmental impact of wastewater generation. This method should be considered an important strategy toward the implementation of carbon-neutrality goals.
Collapse
|