1
|
Ouyang J, Miao Q, Wei D, Zhang X, Luo E, Li C, Wei L. Removal of Cr (VI) and microbial community analysis in PCB wastewater treatment based on the BESI® process. PLoS One 2023; 18:e0290023. [PMID: 37585481 PMCID: PMC10431613 DOI: 10.1371/journal.pone.0290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
The treatment efficiency of Chromium (Cr)-containing Printed Circuit Board (PCB) wastewater is significantly hampered by the limited physiological activity of microorganisms when activated sludge is applied. In this study, the biodegradation and electron transfer based on sulfur metabolism in the integrated (BESI®) process use sulfur as the electron acceptor to achieve sulfate reduction and sulfide oxidation, leading to efficient removal of Cr. The concentrations of total Cr and Cr(VI) in the effluent were reduced to 0.5 mg/L and 0.1 mg/L, respectively, from an initial range of 25-32 mg/L in the influent. The removal of Cr (ΔC(Cr(VI))) mainly occurred in the Sulfate Reduction (SR) reactor, which was significantly correlated with the generation of sulphide ([Formula: see text]) (R2 = 0.9987). Meantime, analysis of the microbial community showed that Cr (VI) stress increased the diversity of the bacterial community in sludge. The presence of Clostridium (52.54% and 47.78%) in SR & Sulfide Oxidation (SO) reactor, along with the Synergistaceae (31.90%) and Trichococcus (26.59%) in aerobic reactor, might contribute to the gradient degradation of COD, resulting in a removal efficiency exceeding 80% when treating an influent with a concentration of 1000 mg/L. In addition, the main precipitation components in the SR reactor were identified by scanning electron microscope, indicating that Cr has been removed from wastewater as Cr(OH)3 precipitation. This study sheds light on the potential of using the BESI® process for the real PCB wastewater treatment.
Collapse
Affiliation(s)
- Jia Ouyang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Qinghua Miao
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
- College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Erming Luo
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| |
Collapse
|
2
|
Wei D, Zhang X, Li C, Ma Z, Zhao M, Wei L. Efficiency and microbial community characteristics of strong alkali ASP flooding produced water treated by composite biofilm system. Front Microbiol 2023; 14:1166907. [PMID: 37303803 PMCID: PMC10247963 DOI: 10.3389/fmicb.2023.1166907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Strong alkali alkali-surfactant-polymer (ASP) flooding produced water is a by-product of oil recovery, and it is a stable system composed of petroleum, polyacrylamide, surfactant, and inorganic salts. Efficient, green, and safe ASP produced water treatment technology is essential for oilfield exploitation and environmental protection. In this study, an anaerobic/anoxic/moving bed biofilm reactor with a microfiltration membrane was established and assessed for the real strong alkali ASP flooding produced water (pH 10.1-10.4) treatment. The results show that the average removal rates of COD, petroleum, suspended solids, polymers and surfactants in this process are 57, 99, 66, 40, and 44%, respectively. GC-MS results show that most of the organic compounds such as alkanes and olefins in the strong alkali ASP produced water are degraded. Microfiltration membrane can significantly improve the efficiency and stability of sewage treatment system. Paracoccus (AN), Synergistaceae (ANO) and Trichococcus (MBBR) are the main microorganisms involved in the degradation of pollutants. This study reveals the potential and adaptability of composite biofilm system in treating the produced water of strong alkali ASP produced water.
Collapse
Affiliation(s)
- Dong Wei
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xinxin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, Heilongjiang, China
| | - Zhongting Ma
- PetroChina Karamay Petrochemical Co., Ltd., Karamay, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wang K, Zhou C, Zhou H, Jiang M, Chen G, Wang C, Zhang Z, Zhao X, Jiang LM, Zhou Z. Comparison on biological nutrient removal and microbial community between full-scale anaerobic/anoxic/aerobic process and its upgrading processes. BIORESOURCE TECHNOLOGY 2023; 374:128757. [PMID: 36801443 DOI: 10.1016/j.biortech.2023.128757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
A comparative study was conducted for the anaerobic/anoxic/aerobic (AAO) process and its two upgrading processes, five-stage Bardenpho and AAO coupling moving bed bioreactors (AAO + MBBR), using long-term operation data of six full-scale wastewater treatment plants. The three processes all had good COD and phosphorus removal performance. The reinforcing effects of carriers on nitrification were moderate at full-scale applications, while the Bardenpho was advantageous in nitrogen removal. The AAO + MBBR and Bardenpho processes both had higher microbial richness and diversity than the AAO. The AAO + MBBR favored bacteria to degrade complex organics (Ottowia and Mycobacterium) and to form biofilms (Novosphingobium), and preferentially enriched denitrifying phosphorus-accumulating bacteria (DPB) (norank_o__Run-SP154) with the highest anoxic to aerobic phosphorus uptake rates of 65.3 % - 83.9 %. The Bardenpho enriched bacteria tolerant to varied environments (Norank_f__Blastocatellaceae, norank_o__Saccharimonadales, and norank_o__SBR103), and was more suitable for the upgrading of the AAO because of its excellent pollutant removal performance and flexible operation mode.
Collapse
Affiliation(s)
- Kun Wang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Chuanting Zhou
- Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China
| | - Hua Zhou
- Shanghai Chengtou Water Group Co., Ltd., Shanghai 201203, China
| | - Ming Jiang
- Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China
| | - Guang Chen
- Shanghai Chengtou Water Group Co., Ltd., Shanghai 201203, China
| | - Cong Wang
- Shanghai Urban Construction Design & Research Institute, Shanghai 200125, China
| | - Zhenjian Zhang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lu-Man Jiang
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
4
|
Wang W, Chang JS, Show KY, Lee DJ. Anaerobic recalcitrance in wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2022; 363:127920. [PMID: 36087651 DOI: 10.1016/j.biortech.2022.127920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic treatment is applied as an alternative to traditional aerobic treatment for recalcitrant compound degradation. This review highlighted the recalcitrant compounds in wastewaters and their pathways under aerobic and anaerobic conditions. Forty-one recalcitrant compounds commonly found in wastewater along with associated anaerobic removal performance were summarized from current research. Anaerobic degradability of wastewater could not be appropriately evaluated by BOD/COD ratio, which should only be suitable for determining aerobic degradability. Recalcitrant wastewaters with a low BOD/COD ratio may be handled by anaerobic treatments after the adaption and provision of sufficient electron donors. Novel indicator characterizing the anaerobic recalcitrance of wastewater is called for, essential for emergent needs to resource recovery from high-strength recalcitrant wastewater for fulfilling appeals of circular bioeconomy of modern societies.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Kuan-Yeow Show
- Puritek Research Institute, Puritec Co., Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Chemical Engineering & Materials Science, Yuan Ze University, Chung-Li 32003, Taiwan.
| |
Collapse
|