1
|
Kasa VP, Brahmandam AKSV, Samal B, Cheela VRS, Dubey BK, Pathak K. Assessment of coastal litter trends in tourist vs. non-tourist beaches: A case study from Indian coastal smart city. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178339. [PMID: 39754956 DOI: 10.1016/j.scitotenv.2024.178339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Coastal ecosystems are increasingly threatened by the accumulation of marine litter globally. Limited data availability along India's eastern coast hinders targeted mitigation efforts. This study assesses coastal litter along Visakhapatnam, a smart city on India's eastern coast, using the NOAA shoreline debris protocol. Litter assessments at 12 sites before and after the monsoon season revealed high mean litter densities (2.66 ± 0.31 items m-2 before monsoon, 2.03 ± 0.29 items m-2 after monsoon), exceeding the global average by twofold and the national average by five-fold. The tourist beaches saw a 63 % litter reduction after monsoon due to the implementation of better waste management practices, while non-tourist beaches saw a 16 % increase, highlighting disparities in waste management practices. Plastic comprised 86 % of litter, exceeding the global mean proportion (85 %) in marine litter. Alarmingly, 50 % of tourist beaches and all non-tourist beaches were classified as "extremely dirty" by the Clean Coast Index. Land-based influx through stormwater drains was identified as the primary source of litter. This study provides critical baseline data for India's eastern coast, emphasizing the urgent need for targeted interventions, including improved stormwater management and community engagement, to mitigate the escalating marine litter crisis. Further, the findings and recommendations provide valuable insights for managing plastic pollution in coastal cities with similar characteristics, particularly those influenced by monsoons and tourism.
Collapse
Affiliation(s)
- Vara Prasad Kasa
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anjani Kumar S V Brahmandam
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Biswajit Samal
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Khanindra Pathak
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Mining Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Portz L, Murgas-Vargas A, Campos PT, Villate-Daza DA, Manzolli RP. How natural disasters affect the distribution of marine litter in protected island ecosystems (Seaflower Biosphere Reserve - Colombia). MARINE POLLUTION BULLETIN 2024; 211:117458. [PMID: 39700699 DOI: 10.1016/j.marpolbul.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Islands are particularly vulnerable to storms and hurricanes, which can cause severe environmental, economic, and social impacts, including the accumulation of waste in marine ecosystems. In November 2020, Hurricane Iota struck the islands of Providencia and Santa Catalina in the Seaflower Biosphere Reserve, Colombia. This study assesses the distribution, composition, and sources of marine litter after the hurricane, focusing on variations observed across coastal ecosystems such as beaches, mangroves, and coral reefs. A comparative analysis of data from 2019 and 2021 reveals significant differences in how the island's diverse ecosystems interact with marine litter, underscoring the impact of extreme events on these environments. While mangroves and back-beach vegetation act as retention zones, particularly for plastic waste, these ecosystems showed a marked reduction in litter density in 2021, likely due to direct removal efforts during recovery and hurricane-driven oceanographic processes that may have redistributed lighter litter. In contrast, sandy beaches experienced an increase in litter following the hurricane, highlighting their greater vulnerability to litter deposition transported by waves and wind during extreme weather events. These findings emphasize the complexity of managing marine litter after natural disasters and underscore the need for enhanced waste management strategies in vulnerable island ecosystems.
Collapse
Affiliation(s)
- Luana Portz
- Geology and Geochemistry Department, Universidad Autónoma de Madrid, Madrid, Spain; Civil and Environmental Department, Universidad de la Costa, Barranquilla, Colombia.
| | - Ana Murgas-Vargas
- Master's Degree in Sustainable Development, Universidad de la Costa, Barranquilla, Colombia
| | | | - Diego Andres Villate-Daza
- Research Group on Administration and Management of Logistics, Maritime and Port Operations, Universidad de la Guajira, Rioacha, Colombia
| | | |
Collapse
|
3
|
De-la-Torre GE, Dioses-Salinas DC, Ribeiro VV, Castro ÍB, Ben-Haddad M, Ortega-Borchardt JÁ. Marine litter along the Peruvian coast: spatiotemporal composition, sources, hazard, and human modification relations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58396-58412. [PMID: 39312112 DOI: 10.1007/s11356-024-34834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/24/2024] [Indexed: 10/11/2024]
Abstract
Marine litter (ML) represents an escalating environmental issue, particularly in Latin America, where comprehensive studies are scarce despite critical solid waste management challenges and continuous human modification occurring on the coasts. To contribute to the knowledge of ML in the southeast Pacific, this study examined contamination across 10 beaches on Peru's extensive coast. Overall, ML contamination was categorized as moderate (with an ML concentration of 0.49 ± 0.64 items∙m-2), while significantly differing between summer (dirty with an ML concentration of 0.56 ± 0.66 items∙m-2) and winter (moderate with an ML concentration of 0.47 ± 0.60 items∙m-2). Three beaches were extremely dirty (concentrations of ML exceeded 1.0 items∙m-2). Predominant materials, items, and sources were plastic, cigarette butts (CBs), and mixed packaging. The Peruvian coast faced CB leachate impact (CBPI = 3.5 ± 3.5), reaching severe levels on two beaches, with considerable hazardous litter (HALI = 3.0 ± 2.9). Additionally, a higher degree of human modification was associated with higher ML levels along the coast.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | - Ítalo Braga Castro
- Instituto Do Mar, Universidade Federal de São Paulo (Unifesp), Santos, Brazil
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | | |
Collapse
|
4
|
Husaini DC, Mendez RK, Arzu M, Harris-Thurton L. Plastic Waste in Latin America and the Caribbean (LAC): Impact on the Environment and Public Health-A Systematic Review. J Toxicol 2024; 2024:5698516. [PMID: 39377048 PMCID: PMC11458288 DOI: 10.1155/2024/5698516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Background The global spread and accumulation of plastics in freshwater, marine, and terrestrial settings are of great concern to public health and the environment, especially in developing countries with few resources. In the Caribbean and Latin America, nearly 17,000 tons of plastic waste are generated and trashed daily in open dumpsites with attendant consequences for the environment, the economy, aquatic life, the beauty of sea beaches, and public health. The increased use of plastics threatens public health and the ecosystem. Main Body. This systematic review assessed the impact of plastic waste on the environment, economy, and public health in LAC by searching relevant databases such as PubMed, HINARI, Google Scholar, and Scopus. PRISMA and Rayyan software were used to select and analyze research articles for the review. Conclusions The review showed that plastic pollution significantly impacts the environment, aquatic life, economy, and human health in LAC. The review further indicated that countries in LAC are working assiduously to address the issues associated with plastic pollution. The use of biodegradable plastics, cleanup campaigns, and policies/programs to reduce or ban plastics are some current efforts in many LAC countries. More research on the impact of plastic waste needs to be conducted, especially in the Caribbean, to address and mitigate the challenges of plastic pollution.
Collapse
Affiliation(s)
- Danladi Chiroma Husaini
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| | - Rodeli Kaylin Mendez
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| | - Michael Arzu
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| | - Lydia Harris-Thurton
- Allied Health DepartmentPharmacy ProgramFaculty of Health SciencesUniversity of BelizeBelmopan Central Campus, Belmopan, Belize
| |
Collapse
|
5
|
Sousa-Guedes D, Bessa F, Queiruga A, Teixeira L, Reis V, Gonçalves JA, Marco A, Sillero N. Lost and found: Patterns of marine litter accumulation on the remote Island of Santa Luzia, Cabo Verde. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123338. [PMID: 38218543 DOI: 10.1016/j.envpol.2024.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Santa Luzia, an uninhabited island in the archipelago of Cabo Verde, serves as a natural laboratory and important nesting site for loggerhead turtles Carettacaretta. The island constitutes an Integral Natural Reserve and a Marine Protected Area. We assessed marine litter accumulation on sandy beaches of the island and analysed their spatial patterns using two sampling methods: at a fine scale, sand samples from 1 × 1 m squares were collected, identifying debris larger than 1 mm; at a coarse scale, drone surveys were conducted to identify visible marine debris (>25 mm) in aerial images. We sampled six points on three beaches of the island: Achados (three points), Francisca (two points) and Palmo Tostão (one point). Then, we modelled the abundance of marine debris using topographical variables as explanatory factors, derived from digital surface models (DSM). Our findings reveal that the island is a significant repository for marine litter (>84% composed of plastics), with up to 917 plastic items per m2 in the sand samples and a maximum of 38 macro-debris items per m2 in the drone surveys. Plastic fragments dominate, followed by plastic pellets (at the fine-scale approach) and fishing materials (at the coarse-scale approach). We observed that north-facing, higher-elevation beaches accumulate more large marine litter, while slope and elevation affect their spatial distribution within the beach. Achados Beach faces severe marine debris pollution challenges, and the upcoming climate changes could exacerbate this problem.
Collapse
Affiliation(s)
- Diana Sousa-Guedes
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre/ ARNET Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111, Sal Rei, Boa Vista Island, Cabo Verde.
| | - Filipa Bessa
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ ARNET Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | | | | | - Vitória Reis
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| | - José Alberto Gonçalves
- Departamento de Geociências, Ambiente e Ordenamento do Território (DGAOT), Faculdade de Ciências da Universidade do Porto, Portugal; CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Adolfo Marco
- Estación Biológica de Doñana, CSIC, C/ Américo Vespucio, s/n, 41092 Sevilla, Spain; BIOS.CV - Conservation of the Environment and Sustainable Development, CP 52111, Sal Rei, Boa Vista Island, Cabo Verde.
| | - Neftalí Sillero
- Centro de Investigação em Ciências Geo-Espaciais (CICGE), Faculdade de Ciências da Universidade do Porto, Alameda do Monte da Virgem, 4430-146 Vila Nova de Gaia, Portugal.
| |
Collapse
|
6
|
Dos Reis Cavalcante E, Ribeiro VV, Taddei RR, Castro ÍB, Alves MJ. High levels of anthropogenic litter trapped in a mangrove area under the influence of different uses. MARINE POLLUTION BULLETIN 2024; 200:116045. [PMID: 38266479 DOI: 10.1016/j.marpolbul.2024.116045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The contamination of mangroves by anthropogenic litter has increased in recent decades. Notably, Brazil occupies a prominent status within Latin America, boasting the second-largest mangrove areas globally. In Santos-São Vicente Estuarine System (SESS), mangroves coexist with a preeminent port complex and substantial urbanization rates. Nevertheless, the anthropogenic litter occurrence and distribution in this ecosystem remains unknown. This study aimed to comprehensively assess anthropogenic litter across 13 strategically positioned sites in the SESS. The total litter density (Mean ± SD) was 22.84 ± 36.47 (0.00-142.00) items·m-2, putting the SESS among the top four most contaminated mangrove ecosystems worldwide. Residential zones accumulated more litter than uninhabited areas and significant correlation was seen with human modification index. Plastic was the prevalent material (70.4 %), measuring mostly between 2.5 and 30 cm (41.1 %). It is imperative that local authorities adopt comprehensive strategies to mitigate contamination, while also curtailing the litter inputs to the SSES mangrove ecosystem.
Collapse
Affiliation(s)
| | | | | | | | - Magno José Alves
- Instituto do Mar, Universidade Federal de São Paulo, Santos, Brazil
| |
Collapse
|
7
|
Garcés-Ordóñez O, Castillo-Olaya V, Espinosa-Díaz LF, Canals M. Seasonal variation in plastic litter pollution in mangroves from two remote tropical estuaries of the Colombian Pacific. MARINE POLLUTION BULLETIN 2023; 193:115210. [PMID: 37385182 DOI: 10.1016/j.marpolbul.2023.115210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Mangroves in estuaries are highly vulnerable to the impacts of plastic litter pollution, because their location at river mouths and the high capacity of mangrove trees to trap plastic items. Here, we present new results on the abundance and characteristics of plastic litter during high and low rainfall seasons in mangrove waters and sediments of the Saija and Timbiqui River estuaries in the Colombian Pacific. In both estuaries, microplastics were the most common size (50-100 %), followed by mesoplastics (13-42 %) and macroplastics (0-8 %). Total abundances of plastic litter were higher during the high rainfall season (0.17-0.53 items/m-3 in surface waters and 764-832 items/m-2 in sediments), with a moderately positive relationship between plastic abundances recorded in both environmental matrices. The most common microplastics were foams and fragments. Continuous research and monitoring are required for a better understanding and management of these ecosystems and their threats.
Collapse
Affiliation(s)
- Ostin Garcés-Ordóñez
- Programa Calidad Ambiental Marina, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis - INVEMAR, calle 25 # 2-55 Rodadero, Santa Marta, Colombia; GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain; Red de Vigilancia para la Conservación y Protección de las aguas marinas y costeras de Colombia-REDCAM, Santa Marta, Colombia.
| | - Victoria Castillo-Olaya
- Programa Calidad Ambiental Marina, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis - INVEMAR, calle 25 # 2-55 Rodadero, Santa Marta, Colombia
| | - Luisa F Espinosa-Díaz
- Programa Calidad Ambiental Marina, Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis - INVEMAR, calle 25 # 2-55 Rodadero, Santa Marta, Colombia; Red de Vigilancia para la Conservación y Protección de las aguas marinas y costeras de Colombia-REDCAM, Santa Marta, Colombia
| | - Miquel Canals
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain
| |
Collapse
|
8
|
Ben-Haddad M, Abelouah MR, Hajji S, Rangel-Buitrago N, Alla AA. The halophyte Cakile maritima Scop. 1772 as a trap of plastic litter on the Moroccan coast. MARINE POLLUTION BULLETIN 2023; 187:114574. [PMID: 36634536 DOI: 10.1016/j.marpolbul.2023.114574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Some plant communities of coastal dunes may affect the magnitude and distribution of litter on the ecosystem. In this study, the aim is to assess the aptitude of the halophyte Cakile maritima Scop. 1772 to be a trap and sink of plastic litter on the Moroccan Atlantic coast. Overall, a significant difference was noted between plastic litter trapped in C. maritima patches (1173 items) and control plots (502 items). Food containers and ropes were the most common trapped items. Shoreline and recreational activities, followed by dumping and ocean/waterway activities are the main sources of the trapped plastic items. The findings suggest the expansion of the cleaning operations to include coastal dunes, the need to change behavior among beachgoers in regard to food plastics disposal, as well the control of C. maritima distribution in the study area, and similar plant species in other regions.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Nelson Rangel-Buitrago
- Programa de Biologia, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia; Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Atlántico, Colombia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| |
Collapse
|
9
|
Beached and Floating Litter Surveys by Unmanned Aerial Vehicles: Operational Analogies and Differences. REMOTE SENSING 2022. [DOI: 10.3390/rs14061336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The abundance of litter pollution in the marine environment has been increasing globally. Remote sensing techniques are valuable tools to advance knowledge on litter abundance, distribution and dynamics. Images collected by Unmanned Aerial Vehicles (UAV, aka drones) are highly efficient to map and monitor local beached (BL) and floating (FL) marine litter items. In this work, the operational insights to carry out both BL and FL surveys using UAVs are detailly described. In particular, flight planning and deployment, along with image products processing and analysis, are reported and compared. Furthermore, analogies and differences between UAV-based BL and FL mapping are discussed, with focus on the challenges related to BL and FL item detection and recognition. Given the efficiency of UAV to map BL and FL, this remote sensing technique can replace traditional methods for litter monitoring, further improving the knowledge of marine litter dynamics in the marine environment. This communication aims at helping researchers in planning and performing optimized drone-based BL and FL surveys.
Collapse
|