1
|
Zou R, Lu J, Bai X, Yang Y, Zhang S, Wu S, Tang Z, Li K, Hua X. The epigenetic-modified downregulation of LOXL1 protein mediates EMT in bladder epithelial cells exposed to benzo[a]pyrene and its metabolite BPDE. Int Immunopharmacol 2024; 142:113232. [PMID: 39340995 DOI: 10.1016/j.intimp.2024.113232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Benzo[a]pyrene (B[a]P) is a well-known polycyclic aromatic hydrocarbon (PAH) pollutant with high carcinogenicity, widespread environmental presence, and significant threat to public health. Epidemiological studies have linked exposure to B[a]P and its metabolite 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE) to the development and progression of various cancers, including bladder cancer. However, its underlying mechanism remains unclear. Our study revealed that B[a]P and BPDE induced epithelial-mesenchymal transition (EMT), a critical early event in cell malignant transformation, involving a decrease in E-Cadherin and upregulation of N-Cadherin protein levels, leading to increased cell motility and migration in bladder epithelial cells. Further studies have indicated that LOXL1 DNA undergoes methylation and modification influenced by methyltransferase 3a (DNMT3a) and DNMT3b, resulting in decreased LOXL1 protein levels. The decreased LOXL1 promotes the zinc finger transcription factor SLUG, which then inhibits E-Cadherin protein levels and initiates the EMT process. Moreover, DNMT3a/3b expression appears to be influenced by intracellular oxidative stress levels. These findings suggest that exposure to B[a]P/BPDE promotes the EMT process through the pivotal factor LOXL1, thereby contributing to bladder carcinogenesis. Our study provides a theoretical basis for considering LOXL1 as a potential biomarker for early diagnosis and a novel target for the precise diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Ronghao Zou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Juan Lu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaoyue Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhixin Tang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Kang Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Tan W, Yang X, Zhang C, Xie Q, Song W, Li W. Gene expression profiles to clarify the effect of low-dose benzo(a)pyrene on crystalline silica induced acute lung injury in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124580. [PMID: 39032549 DOI: 10.1016/j.envpol.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Published evidences have suggested that air pollutant benzo(a)pyrene (BaP) may modify the toxicity and adverse effects produced by other toxicants. However, the precise role of short-term exposure to low-dose BaP on acute lung injury (ALI) induced by crystalline silica (CS) and the underlying mechanisms remain to be clarified. To investigate this issue, a mouse co-exposure model was established by intratracheal instillation of 2.5 mg CS and BaP alone or in combination. Our data found that CS exposure resulted in ALI as evidenced by lung histological changes, elevated lactate dehydrogenase activity, increased level of pro-inflammatory markers and enhanced oxidative damage. Although exposure to BaP alone had little effect on the pathological changes of mice lung tissues except for occasionally mild inflammation, it could aggravate the CS-induced ALI in a dose-dependent manner. Bioinformatic analysis of transcriptome sequencing suggested that the expression changes of significantly differentially expressed genes were closely related to the severity of ALI. The joined analysis of STC and WGCNA found that "NOD-like receptor signaling pathway", "toll-like receptor signaling pathway", "TNF signaling pathway", and "NF-kappa B signaling pathway" associated with immune and inflammatory response were the most prominent significant pathways. TLR2/9 and Nod2 might be the key inflammation-related genes that were differentially expressed in the combined lung toxicity induced by CS and BaP exposure. All these findings suggest that co-exposure of CS and low-dose BaP can cause more severe lung inflammation and oxidative damage in mice than exposure alone, which may be useful in the management and prevention of silicosis. The roles of TLR2/9 and Nod2 as candidate targets in the combined toxicity need further exploration.
Collapse
Affiliation(s)
- Wenjian Tan
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xinxin Yang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qi Xie
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Weiyi Song
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Wei Li
- School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Key Laboratory of Environment and Health, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Tang L, Chen B, Wang B, Xu J, Yan H, Shan Y, Zhao X. Mediation of FOXA2/IL-6/IL-6R/STAT3 signaling pathway mediates benzo[a]pyrene-induced airway epithelial mesenchymal transformation in asthma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124384. [PMID: 38901818 DOI: 10.1016/j.envpol.2024.124384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Benzo [a]pyrene (BaP), a toxic pollutant, increases the incidence and severity of asthma. However, the molecular mechanisms underlying the effects of BaP in asthma remain unclear. In terms of research methods, we used BaP to intervene in the animal model of asthma and the human bronchial epithelial (16HBE) cells, and the involved mechanisms were found from the injury, inflammation, and airway epithelial to mesenchymal transition (EMT) in asthma. We also constructed small interfering RNAs and overexpression plasmids to knockdown/overexpress IL-6R and FOXA2 in 16HBE cells and a serotype 9 adeno-associated viral vector for lung tissue overexpression of FOXA2 in mice to determine the mechanism of action of BaP-exacerbated asthma airway EMT. We observed that BaP aggravated inflammatory cell infiltration into the lungs, reduced the Penh value, increased collagen fibres in the lung tissue, and increased serum IgE levels in asthmatic mice. After BaP intervention, the expression of FOXA2 in the lung tissue of asthmatic mice decreased, the production and secretion of IL-6 were stimulated, and STAT3 phosphorylation and nuclear translocation increased, leading to changes in EMT markers. However, EMT decreased after increasing FOXA2 expression and decreasing that of IL-6R and was further enhanced after low FOXA2 expression. Our results revealed that BaP exacerbated airway epithelial cell injury and interfered with FOXA2, activating the IL-6/IL-6R/STAT3 signaling pathway to promote airway EMT in asthma. These findings provide toxicological evidence for the mechanism underlying the contribution of BaP to the increased incidence of asthma and its exacerbations.
Collapse
Affiliation(s)
- Lingling Tang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bailei Chen
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Bohan Wang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China
| | - Jing Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hua Yan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yiwen Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210004, China.
| |
Collapse
|
4
|
Li MD, Chen LH, Xiang HX, Jiang YL, Lv BB, Xu DX, Zhao H, Fu L. Benzo[a]pyrene evokes epithelial-mesenchymal transition and pulmonary fibrosis through AhR-mediated Nrf2-p62 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134560. [PMID: 38759404 DOI: 10.1016/j.jhazmat.2024.134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Benzo[a]pyrene (BaP) and its metabolic end product benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), are known toxic environmental pollutants. This study aimed to analyze whether sub-chronic BPDE exposure initiated pulmonary fibrosis and the potential mechanisms. In this work, male C57BL6/J mice were exposed to BPDE by dynamic inhalation exposure for 8 weeks. Our results indicated that sub-chronic BPDE exposure evoked pulmonary fibrosis and epithelial-mesenchymal transition (EMT) in mice. Both in vivo and in vitro, BPDE exposure promoted nuclear translocation of Snail. Further experiments indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) and p62 were upregulated in BPDE-exposed alveolar epithelial cells. Moreover, Nrf2 siRNA transfection evidently attenuated BPDE-induced p62 upregulation. Besides, p62 shRNA inhibited BPDE-incurred Snail nuclear translocation and EMT. Mechanically, BPDE facilitated physical interaction between p62 and Snail in the nucleus, then repressed Snail protein degradation by p62-dependent autophagy-lysosome pathway, and finally upregulated transcriptional activity of Snail. Additionally, aryl hydrocarbon receptor (AhR) was activated in BPDE-treated alveolar epithelial cells. Dual-luciferase assay indicated activating AhR could bind to Nrf2 gene promoter. Moreover, pretreatment with CH223191 or α-naphthoflavone (α-NF), AhR antagonists, inhibited BPDE-activated Nrf2-p62 signaling, and alleviated BPDE-induced EMT and pulmonary fibrosis in mice. Taken together, AhR-mediated Nrf2-p62 signaling contributes to BaP-induced EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Li-Hong Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hui-Xian Xiang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, China
| | - Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
5
|
Hýžďalová M, Procházková J, Straková N, Pěnčíková K, Strapáčová S, Slováčková J, Kajabová S, Líbalová H, Topinka J, Kabátková M, Vondráček J, Mollerup S, Machala M. Transcriptional and phenotypical alterations associated with a gradual benzo[a]pyrene-induced transition of human bronchial epithelial cells into mesenchymal-like cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104424. [PMID: 38522766 DOI: 10.1016/j.etap.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
The role of benzo[a]pyrene (BaP), a prominent genotoxic carcinogen and aryl hydrocarbon receptor (AhR) ligand, in tumor progression remains poorly characterized. We investigated the impact of BaP on the process of epithelial-mesenchymal transition (EMT) in normal human bronchial epithelial HBEC-12KT cells. Early morphological changes after 2-week exposure were accompanied with induction of SERPINB2, IL1, CDKN1A/p21 (linked with cell cycle delay) and chemokine CXCL5. After 8-week exposure, induction of cell migration and EMT-related pattern of markers/regulators led to induction of further pro-inflammatory cytokines or non-canonical Wnt pathway ligand WNT5A. This trend of up-regulation of pro-inflammatory genes and non-canonical Wnt pathway constituents was observed also in the BaP-transformed HBEC-12KT-B1 cells. In general, transcriptional effects of BaP differed from those of TGFβ1, a prototypical EMT inducer, or a model non-genotoxic AhR ligand, TCDD. Carcinogenic polycyclic aromatic hydrocarbons could thus induce a unique set of molecular changes linked with EMT and cancer progression.
Collapse
Affiliation(s)
- Martina Hýžďalová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Jiřina Procházková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 61200, Czech Republic
| | - Nicol Straková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Simona Strapáčová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Jana Slováčková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic; Department of Histology and Embryology, Masaryk University, Kamenice 3, Brno 62500, Czech Republic
| | - Simona Kajabová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Markéta Kabátková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 61200, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno 61200, Czech Republic
| | - Steen Mollerup
- Research Group for Occupational Toxicology, The National Institute of Occupational Health in Norway, Oslo 0304, Norway
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic.
| |
Collapse
|
6
|
Ji XF, Zhou Q, Wang JW, Sun F, Gao S, Wang K. Associations of Wnt5a expression with liver injury in chronic hepatitis B virus infection. BMC Infect Dis 2023; 23:860. [PMID: 38062395 PMCID: PMC10704684 DOI: 10.1186/s12879-023-08865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Aberrant Wnt5a expression contributes to immunity, inflammation and tissue damage. However, it remains unknown whether Wnt5a is associated with liver injury in chronic hepatitis B virus (HBV) infection. We aimed to explore the potential role of Wnt5a expression in liver injury caused by chronic HBV infection. METHODS Wnt5a mRNA levels in peripheral blood mononuclear cells (PBMCs) were analyzed in 31 acute-on-chronic hepatitis B liver failure (ACHBLF) patients, 82 chronic hepatitis B (CHB) patients, and 20 healthy controls using quantitative real-time polymerase chain reaction. Intrahepatic Wnt5a protein expression from 32 chronic HBV infection patients and 6 normal controls was evaluated by immunohistochemical staining. RESULTS Wnt5a mRNA expression was increased in CHB patients and ACHBLF patients compared to healthy controls and correlated positively with liver injury markers. Additionally, there was a significant correlation between Wnt5a mRNA expression and HBV DNA load in all patients and CHB patients but not in ACHBLF patients. Furthermore, intrahepatic Wnt5a protein expression was elevated in chronic HBV infection patients compared to that in normal controls. Moreover, chronic HBV infection patients with higher hepatic inflammatory grades had increased intrahepatic Wnt5a protein expression compared with lower hepatic inflammatory grades. In addition, the cut-off value of 12.59 for Wnt5a mRNA level was a strong indicator in predicting ACHBLF in CHB patients. CONCLUSIONS We found that Wnt5a expression was associated with liver injury in chronic HBV infection patients. Wnt5a might be involved in exacerbation of chronic HBV infection.
Collapse
Affiliation(s)
- Xiang-Fen Ji
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Qi Zhou
- Department of Pediatric Surgery, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Fei Sun
- Department of Hepatology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Shandong University, Jinan, 250012, China.
- Hepatology Institute of Shandong University, Jinan, 250012, China.
| |
Collapse
|
7
|
Xiao Y, Zhang L, Liu H, Huang W. Systemic inflammation mediates environmental polycyclic aromatic hydrocarbons to increase chronic obstructive pulmonary disease risk in United States adults: a cross-sectional NHANES study. Front Public Health 2023; 11:1248812. [PMID: 38074734 PMCID: PMC10703366 DOI: 10.3389/fpubh.2023.1248812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction This study explored the relationship between environmental polycyclic aromatic hydrocarbons (PAHs) and Chronic obstructive pulmonary disease (COPD), and identified systemic inflammation as a mediator of the increased risk of COPD from PAHs. Methods Data were obtained from 60,936 middle-aged and older Americans recruited in the National Health and Nutrition Examination Survey 2005-2016. Environmental PAHs were measured in terms of urinary concentrations of PAHs metabolites (NAP: 1-hydroxynaphthalene, FLU: 2-hydroxyfluorene, PA: 1-hydroxyphenanthrene, and PYR: 1-hydroxypyrene). We used multifactor logical analysis to figure out the link between PAHs and COPD, and the non-linear relationship was examined using Restricted cubic spline. Spearman correlation analysis was utilized to analyze the connection between PAHs and systemic immune-inflammation index (SII). Results The results showed that the COPD population had higher NAP (3.550 vs. 3.282, p < 0.001), FLU (2.501 vs. 2.307, p < 0.001), PA (2.155 vs. 2.082, p = 0.005), and PYR (2.013 vs. 1.959, p = 0.008) levels than non-COPD population. In unadjusted logistics analysis, the risk of COPD with log NAP was higher [OR = 1.461, 95% CI (1.258-1.698), p < 0.001]. Upon taking into account, confounders like sex, age, race, and log NAP still increased a possible COPD risk [OR = 1.429, 95% CI (1.224-1.669), p < 0.001]. Similarly, FLU, PA, and PYR significantly increased the risk of COPD (all OR > 1, p < 0.05), both unadjusted and adjusted. Furthermore, Restricted cubic spline demonstrated a strong link between PAHs levels and COPD risk (p < 0.05). Additionally, a Spearman correlation analysis revealed a favorable association between log FLU and log SII (R = 0.43, p = 0.006), while NAP, PA, and PYR levels were not associated with log SII (all p > 0.05). Ultimately, the mediating effect analysis revealed a mediating effect capacity of 5.34% for the SII-mediated association between FLU and COPD. Conclusion The findings suggest that the risk of COPD is significantly increased when environmental PAHs exposure is at high levels, and that systemic inflammation may be involved in the process.
Collapse
Affiliation(s)
- Yingqi Xiao
- Department of Pulmonary and Critical Care Medicine, Dongguan Tungwah Hospital, Dongguan, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Dongguan Tungwah Hospital, Dongguan, China
| | - Hu Liu
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Wei Huang
- Department of Orthopedics, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| |
Collapse
|
8
|
Fan L, Bin Wang, Ma J, Ye Z, Nie X, Cheng M, Xie Y, Gu P, Zhang Y, You X, Zhou Y, Chen W. Role and mechanism of WNT5A in benzo(a)pyrene-induced acute lung injury and lung function decline. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132391. [PMID: 37651938 DOI: 10.1016/j.jhazmat.2023.132391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Benzo(a)pyrene was sparsely studied for its early respiratory impairment. The non-canonical ligand WNT5A play a role in pneumonopathy, while its function during benzo(a)pyrene-induced adverse effects were largely unexplored. Individual benzo(a)pyrene, plasma WNT5A, and spirometry 24-hour change for 87 residents from Wuhan-Zhuhai cohort were determined to analyze potential role of WNT5A in benzo(a)pyrene-induced lung function alternation. Normal bronchial epithelial cell lines were employed to verify the role of WNT5A after benzo(a)pyrene treatment. RNA sequencing was adopted to screen for benzo(a)pyrene-related circulating microRNAs and differentially expressed microRNAs between benzo(a)pyrene-induced cells and controls. The most potent microRNA was selected for functional experiments and target gene validation, and their mechanistic link with WNT5A-mediated non-canonical Wnt signaling was characterized through rescue assays. We found significant associations between increased benzo(a)pyrene and reduced 24-hour changes of FEF50% and FEF75%, as well as increased WNT5A. The benzo(a)pyrene-induced inflammation and epithelial-mesenchymal transition in BEAS-2B and 16HBE cells were attenuated by WNT5A silencing. hsa-miR-122-5p was significantly and positively associated with benzo(a)pyrene and elevated after benzo(a)pyrene induction, and exerted its effect by downregulating target gene TP53. Functionally, WNT5A participates in benzo(a)pyrene-induced lung epithelial injury via non-canonical Wnt signaling modulated by hsa-miR-122-5p/TP53 axis, showing great potential as a preventive and therapeutic target.
Collapse
Affiliation(s)
- Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Man Cheng
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt SLiM ligand mimic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. Infect Immun 2023; 91:e0008523. [PMID: 37530530 PMCID: PMC10501218 DOI: 10.1128/iai.00085-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/03/2023] [Indexed: 08/03/2023] Open
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways, including Wnt, Notch, and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling, resulting in the activation of Hippo transcription coactivator Yes-associated protein (Yap). Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120, and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM, and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors, Yap, and transcriptional enhanced associate domain (TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, the TRP120-Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased B cell lymphoma-extra large (BCL-xL) and decreased BCL2-associated X, apoptosis regulator (Bax) levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in GLUT1 and BCL-xL levels and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
10
|
Poniedziałek B, Rzymski P, Zarębska-Michaluk D, Rogalska M, Rorat M, Czupryna P, Kozielewicz D, Hawro M, Kowalska J, Jaroszewicz J, Sikorska K, Flisiak R. Short-term exposure to ambient air pollution and COVID-19 severity during SARS-CoV-2 Delta and Omicron waves: A multicenter study. J Med Virol 2023; 95:e28962. [PMID: 37466326 DOI: 10.1002/jmv.28962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Air pollution may affect the clinical course of respiratory diseases, including COVID-19. This study aimed to evaluate the relationship between exposure of adult patients to mean 24 h levels of particulate matter sized <10 μm (PM10 ) and <2.5 μm (PM2.5 ) and benzo(a)pyrene (B(a)P) during a week before their hospitalization due to SARS-CoV-2 infection and symptomatology, hyperinflammation, coagulopathy, the clinical course of disease, and outcome. The analyses were conducted during two pandemic waves: (i) dominated by highly pathogenic Delta variant (n = 1440) and (ii) clinically less-severe Omicron (n = 785), while the analyzed associations were adjusted for patient's age, BMI, gender, and comorbidities. The exposure to mean 24 h B(a)P exceeding the limits was associated with increased odds of fever and fatigue as early COVID-19 symptoms, hyperinflammation due to serum C-reactive protein >200 mg/L and interleukin-6 >100 pg/mL, coagulopathy due to d-dimer >2 mg/L and fatal outcome. Elevated PM10 and PM2. 5 levels were associated with higher odds of respiratory symptoms, procalcitonin >0.25 ng/mL and interleukin >100 pg/mL, lower oxygen saturation, need for oxygen support, and death. The significant relationships between exposure to air pollutants and the course and outcomes of COVID-19 were observed during both pandemic waves. Short-term exposure to elevated PM and B(a)P levels can be associated with a worse clinical course of COVID-19 in patients requiring hospitalization and, ultimately, contribute to the health burden caused by SARS-CoV-2 variants of higher and lower clinical significance.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | | | - Magdalena Rogalska
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| | - Marta Rorat
- Department of Forensic Medicine, Wrocław Medical University, Wroclaw, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Bialystok, Poland
| | - Dorota Kozielewicz
- Department of Infectious Diseases and Hepatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Hawro
- Department of Infectious Diseases and Hepatology, Medical Center in Łańcut, Łańcut, Poland
| | - Justyna Kowalska
- Department of Adult's Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, Bytom, Poland
| | - Katarzyna Sikorska
- Division of Tropical Medicine and Epidemiology, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
- Division of Tropical and Parasitic Diseases, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
11
|
Peng K, Li Z, Gao TR, Lv J, Wang WJ, Zhan P, Yao WC, Zhao H, Wang H, Xu DX, Huang Y, Tan ZX. Polycyclic aromatic hydrocarbon exposure burden: Individual and mixture analyses of associations with chronic obstructive pulmonary disease risk. ENVIRONMENTAL RESEARCH 2023; 222:115334. [PMID: 36702192 DOI: 10.1016/j.envres.2023.115334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/01/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Accumulating data demonstrate that polycyclic aromatic hydrocarbons (PAH) exposure is linked to compromised respiratory diseases. This study aimed to analyze urinary PAH metabolites and their associations with chronic obstructive pulmonary disease (COPD) in a sample size of 3015 subjects from a total population of 50,588 from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. Results showed that the most predominant metabolite was 1-Hydroxynaphthalene (1-NAP, 84%) with a geometric mean concentration of 50,265 ng/L, followed by its homologue 2-NAP (10%), both of which arose from sources including road emission, smoking and cooking. Multiple logistic regression showed that seven of the ten major PAH metabolites were correlated with increased COPD risk: including 1-NAP (OR: 1.83, 95%CI: 1.25, 2.69), 2-Hydroxyfluorene (2-FLU, OR: 2.29, 95%CI: 1.42, 3.68) and 1-Hydroxyphenanthrene (1-PHE, OR: 2.79, 95%CI: 1.85, 4.21), when compared to the lowest tertile after adjusted for covariates. Total exposure burden per PAH congener sub-group demonstrated persistent positive correlation with COPD for ∑PHE (OR: 1.80, 95%CI: 1.34, 2.43) and ∑FLU (OR: 2.74, 95%CI: 1.77, 4.23) after adjusted for covariates. To address the contribution of PAH exposure as mixture towards COPD, weighted quantile sum (WQS) regression analyses revealed that 1-NAP, 9-Hydroxyfluorene (9-FLU), 3-Hydroxyfluorene (3-FLU) and 1-PHE were among the top contributors in the associations with COPD. Our results demonstrate the contemporary yet ongoing exposure burden of PAH exposure for over a decade, particularly towards NAPs and FLUs that contribute significantly to COPD risk, calling for more timely environmental regulation.
Collapse
Affiliation(s)
- Kun Peng
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhao Li
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tian-Rui Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jia Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Wen-Jing Wang
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ping Zhan
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wen-Cong Yao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hui Zhao
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Zhu-Xia Tan
- Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
12
|
Zhou B, Wang L, Yang S, Liang Y, Zhang Y, Pan X, Li J. Diosmetin alleviates benzo[ a]pyrene-exacerbated H1N1 influenza virus-induced acute lung injury and dysregulation of inflammation through modulation of the PPAR-γ-NF-κB/P38 MAPK signaling axis. Food Funct 2023; 14:3357-3378. [PMID: 36942763 DOI: 10.1039/d2fo02590f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The severity of a viral respiratory illness was greatly exacerbated after exposure to a contaminant containing benzo[a]pyrene (B[a]P). Flavonoid-rich fruit intake has gained intense interest due to their health-promoting benefits for viral respiratory diseases, including influenza viruses. In our study, diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a naturally occurring hydroxylated methoxyflavone that is abundant in Citrus fruits, was explored for its effects on B[a]P-exacerbated H1N1 influenza virus-mediated inflammation and lung injury. Initially, in vivo results demonstrated that diosmetin protected against H1N1 virus-elicited acute lung injury. Simultaneously, H1N1 virus or B[a]P-stimulated A549 cells treated with diosmetin inhibited NF-κB and P-P38 activation, resulting in suppression of pro-inflammatory cytokines and apoptosis. Interestingly, diosmetin obviously promoted the expression of PPAR-γ as well as nuclear translocation of PPAR-γ, whereas, PPAR-γ inhibition by GW9662 weakened the inhibitory effects of diosmetin on H1N1 virus or B[a]P-mediated activation of NF-κB and P-P38, elevated expression of pro-inflammatory mediators as well as apoptosis. Furthermore, it was surprising to discover that mice exposed to both B[a]P and H1N1 viruses contributed to exacerbated acute lung injury, which were significantly ameliorated by diosmetin administration. In vitro studies showed that A549 cells with the combination of B[a]P and H1N1 virus augmented NF-κB and P-P38 activation, accompanied by higher levels of pro-inflammatory mediators and apoptosis, all of which were also significantly reduced by diosmetin treatment. Repressing PPAR-γ abrogated the inhibitory effects of diosmetin on B[a]P-exacerbated H1N1 virus-mediated NF-κB and P-P38 activation, inflammation, and apoptosis in A549 cells. Our findings suggest that diosmetin protected against B[a]P-exacerbated H1N1 virus-mediated lung injury by suppressing the exacerbation of NF-κB and P38 kinase activation in a PPAR-γ-dependent manner, suggesting potential benefits for B[a]P-exacerbated influenza-related illness therapeutics.
Collapse
Affiliation(s)
- Beixian Zhou
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | | | - Sushan Yang
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | - Yueyun Liang
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | - Yuehan Zhang
- The People's Hospital of Gaozhou, Gaozhou 525200, China
| | | | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
- Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt short linear motif ligand mimetic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531456. [PMID: 36945589 PMCID: PMC10028901 DOI: 10.1101/2023.03.06.531456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways including Wnt, Notch and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling resulting in activation of Hippo transcription coactivator Yap and target gene expression. Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120 and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors (Yap and TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, TRP120 Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased BCL-xL and decreased Bax levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in levels of GLUT1 and BCL-xL, and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimetic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
14
|
Ye Z, Cheng M, Fan L, Ma J, Zhang Y, Gu P, Xie Y, You X, Zhou M, Wang B, Chen W. Plasma microRNA expression profiles associated with zinc exposure and type 2 diabetes mellitus: Exploring potential role of miR-144-3p in zinc-induced insulin resistance. ENVIRONMENT INTERNATIONAL 2023; 172:107807. [PMID: 36773565 DOI: 10.1016/j.envint.2023.107807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Zinc exposure has been linked with disordered glucose metabolism and type 2 diabetes mellitus (T2DM) development. However, the underlying mechanism remains unclear. We conducted population-based studies and in vitro experiments to explore potential role of microRNAs (miRNAs) in zinc-related hyperglycemia and T2DM. In the discovery stage, we identified plasma miRNAs expression profile for zinc exposure based on 87 community residents from the Wuhan-Zhuhai cohort through next-generation sequencing. MiRNAs profiling for T2DM was also performed among 9 pairs newly diagnosed T2DM-healthy controls. In the validating stage, plasma miRNA related to both of zinc exposure and T2DM among the discovery population was measured by qRT-PCR in 161 general individuals derived from the same cohort. Furthermore, zinc treated HepG2 cells with mimic or inhibitor were used to verify the regulating role of miR-144-3p. Based on the discovery and validating populations, we observed that miR-144-3p was positively associated with urinary zinc, hyperglycemia, and risk of T2DM. In vitro experiments confirmed that zinc-induced increase in miR-144-3p expression suppressed the target gene Nrf2 and downstream antioxidant enzymes, and aggravated insulin resistance. Our findings provided a novel clue for mechanism underlying zinc-induced glucose dysmetabolism and T2DM development, emphasizing the important role of miR-144-3p dysregulation.
Collapse
Affiliation(s)
- Zi Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yingdie Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pei Gu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yujia Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojie You
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
15
|
Rzymski P, Poniedziałek B, Rosińska J, Rogalska M, Zarębska-Michaluk D, Rorat M, Moniuszko-Malinowska A, Lorenc B, Kozielewicz D, Piekarska A, Sikorska K, Dworzańska A, Bolewska B, Angielski G, Kowalska J, Podlasin R, Oczko-Grzesik B, Mazur W, Szymczak A, Flisiak R. The association of airborne particulate matter and benzo[a]pyrene with the clinical course of COVID-19 in patients hospitalized in Poland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119469. [PMID: 35580710 PMCID: PMC9106990 DOI: 10.1016/j.envpol.2022.119469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 05/06/2023]
Abstract
Air pollution can adversely affect the immune response and increase the severity of the viral disease. The present study aimed to explore the relationship between symptomatology, clinical course, and inflammation markers of adult patients with coronavirus disease 2019 (COVID-19) hospitalized in Poland (n = 4432) and air pollution levels, i.e., mean 24 h and max 24 h level of benzo(a)pyrene (B(a)P) and particulate matter <10 μm (PM10) and <2.5 μm (PM2.5) during a week before their hospitalization. Exposures to PM2.5 and B(a)P exceeding the limits were associated with higher odds of early respiratory symptoms of COVID-19 and hyperinflammatory state: interleukin-6 > 100 pg/mL, procalcitonin >0.25 ng/mL, and white blood cells count >11 × 103/mL. Except for the mean 24 h PM10 level, the exceedance of other air pollution parameters was associated with increased odds for oxygen saturation <90%. Exposure to elevated PM2.5 and B(a)P levels increased the odds of oxygen therapy and death. This study evidences that worse air quality is related to increased severity of COVID-19 and worse outcome in hospitalized patients. Mitigating air pollution shall be an integral part of measures undertaken to decrease the disease burden during a pandemic of viral respiratory illness.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806, Poznań, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), 60-806, Poznań, Poland.
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806, Poznań, Poland.
| | - Joanna Rosińska
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806, Poznań, Poland.
| | - Magdalena Rogalska
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-089, Białystok, Poland.
| | | | - Marta Rorat
- Department of Forensic Medicine, Wrocław Medical University, 50-367, Wrocław, Poland; First Infectious Diseases Ward, Gromkowski Regional Specialist Hospital in Wrocław, 51-149, Wrocław, Poland.
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, 15-089, Białystok, Poland.
| | - Beata Lorenc
- Pomeranian Center of Infectious Diseases, Department of Infectious Diseases, 80-210, Gdańsk, Poland.
| | - Dorota Kozielewicz
- Department of Infectious Diseases and Hepatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100, Toruń, Poland.
| | - Anna Piekarska
- Department of Infectious Diseases and Hepatology, Medical University of Łódź, 90-549, Łódź, Poland.
| | - Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Medical University of Gdańsk, 80-210, Gdańsk, Poland.
| | - Anna Dworzańska
- Department of Infectious Diseases and Hepatology, Medical University of Lublin, 20-059, Lublin, Poland.
| | - Beata Bolewska
- Department of Infectious Diseases, Poznan University of Medical Sciences, 61-701, Poznań, Poland.
| | | | - Justyna Kowalska
- Department of Adults' Infectious Diseases, Medical University of Warsaw, 02-091, Warsaw, Poland.
| | - Regina Podlasin
- Regional Hospital of Infectious Diseases in Warsaw, Warsaw, Poland.
| | - Barbara Oczko-Grzesik
- Department of Infectious Diseases and Hepatology, Medical University of Silesia, 40-055, Katowice, Poland.
| | - Włodzimierz Mazur
- Clinical Department of Infectious Diseases in Chorzów, Medical University of Silesia, Katowice, Poland.
| | - Aleksandra Szymczak
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, Wrocław, Poland.
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-089, Białystok, Poland.
| |
Collapse
|