1
|
Wang L, Zhang J, Ding R, Zhou Y. Intermittent multi-generational reproductive toxicities of 1-alkyl-3-methylimidazolium tetrafluoroborate with essential involvement of lipid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173738. [PMID: 38844219 DOI: 10.1016/j.scitotenv.2024.173738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/23/2024]
Abstract
Ionic liquids (ILs) become emerging environmental pollutants. Especially, alkyl imidazolium ILs commonly showed stimulation in toxicological studies and mechanisms remained to be explored. In the present study, alkyl imidazolium tetrafluoroborate ([amim]BF4), with ethyl ([emim]), hexyl ([hmim]) and octyl ([omim]) as side-chains, were chosen as target ILs. Their toxicities on the reproduction and lifespan of Caenorhabditis elegans were explored with two types (A and B) exposure arrangements to mimic realistic intermittent multi-generational exposure scenarios. In type A scenario, there was an exposure every 4 generations with 12 generations in total, and in type B one, there was an exposure every two generations with 12 generations in total. Result showed that [emim]BF4 caused inhibition on the reproduction in 8 generations in type A exposure but 6 ones in type B exposure. Meanwhile, [hmim]BF4 showed inhibition in one generation and stimulation in 3 generations in type A exposure, but stimulation in 6 generations in type B exposure. Also, [omim]BF4 showed stimulation in one generation in type B exposure. Collectively, the results demonstrated less frequencies of inhibition, or more frequencies of stimulation, in the exposure scenario with more frequent exposures. Further mechanism exploration was performed to measure the lipid storage and metabolism in the aspect of energy supply. Results showed that [emim]BF4, [hmim]BF4 and [omim]BF4 commonly stimulated the triglyceride (TG) levels across generations. They also disturbed the activities of glycerol-3-phosphate acyltransferase (GPAT) and acetyl CoA carboxylase (ACC) in lipogenesis, those of adipose triglyceride lipase (ATGL) and carnitine acyl transferase (CPT) in lipolysis, and also the contents of acetyl-CoA (ACA). Further data analysis indicated the energy allocation among life traits including reproduction, antioxidant responses and hormone regulations.
Collapse
Affiliation(s)
- Lei Wang
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing 314051, PR China
| | - Jing Zhang
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Ruoqi Ding
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing 314051, PR China
| | - Yangyuan Zhou
- Jiaxing Tongji Institute for Environment, Jiaxing 314051, PR China
| |
Collapse
|
2
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
3
|
Augustyniak M, Ajay AK, Kędziorski A, Tarnawska M, Rost-Roszkowska M, Flasz B, Babczyńska A, Mazur B, Rozpędek K, Alian RS, Skowronek M, Świerczek E, Wiśniewska K, Ziętara P. Survival, growth and digestive functions after exposure to nanodiamonds - Transgenerational effects beyond contact time in house cricket strains. CHEMOSPHERE 2024; 349:140809. [PMID: 38036229 DOI: 10.1016/j.chemosphere.2023.140809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
The long-term exposure effects of nanodiamonds (NDs), spanning an organism's entire lifespan and continuing for subsequent generation, remain understudied. Most research has focused on evaluating their biological impacts on cell lines and selected organisms, typically over short exposure durations lasting hours or days. The study aimed to assess growth, mortality, and digestive functions in wild (H) and long-lived (D) strains of Acheta domesticus (Insecta: Orthoptera) after two-generational exposure to NDs in concentrations of 0.2 or 2 mg kg-1 of food, followed by their elimination in the third generation. NDs induced subtle stimulating effect that depended on the strain and generation. In the first generation, more such responses occurred in the H than in the D strain. In the first generation of H strain insects, contact with NDs increased survival, stimulated the growth of young larvae, and the activity of most digestive enzymes in mature adults. The same doses and exposure time did not cause similar effects in the D strain. In the first generation of D strain insects, survival and growth were unaffected by NDs, whereas, in the second generation, significant stimulation of those parameters was visible. Selection towards longevity appears to support higher resistance of the insects to exposure to additional stressor, at least in the first generation. The cessation of ND exposure in the third generation caused potentially harmful changes, which included, e.g., decreased survival probability in H strain insects, slowed growth of both strains, as well as changes in heterochromatin density and distribution in nuclei of the gut cells in both strains. Such a reaction may suggest the involvement of epigenetic inheritance mechanisms, which may become inadequate after the stress factor is removed.
Collapse
Affiliation(s)
- Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland.
| | - Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Beata Mazur
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Katarzyna Rozpędek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Reyhaneh Seyed Alian
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Magdalena Skowronek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Klaudia Wiśniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
4
|
Zhang J, Wang L, Liu M, Yu Z. Multi- and trans-generational effects of di-n-octyl phthalate on behavior, lifespan and reproduction of Caenorhabditis elegans through neural regulation and lipid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165268. [PMID: 37406686 DOI: 10.1016/j.scitotenv.2023.165268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Di-n-octyl phthalate (DOP) is one important phthalate analog whose toxicities need comprehensive investigation to fully demonstrate phthalates health risks. In the present study, apical effects of DOP on behavior, lifespan and reproduction and the underlying mechanisms were explored in Caenorhabditis elegans for four consecutive generations (F1 to F4) and the trans-generational effects were also measured in the great-grand-children (T4 and T4') of F1 and F4. Multi-generational results showed that DOP caused both stimulation and inhibition on head swing, body bending, reverse, Omega steering, pharyngeal pump and satiety quiescence. The stimulation and inhibition altered over concentrations and across generations, and the alteration was the greatest in reverse locomotion which showed both concentration-dependent hormesis and trans-hormesis. DOP stimulated lifespan and inhibited reproduction, showing trade-off relationships. Significant trans-generational residual effects were found in T4 and T4' where the exposure was completed eliminated. Moreover, both similar and different effects were found in comparisons between F1 and F4, between F1 and T4, between F4 and T4' and also between T4 and T4'. Further analysis showed close connections between effects of DOP on neurotransmitters (including dopamine, acetylcholine, γ-aminobutyric acid and serotonin) and enzymes in lipid metabolism (including lipase, acetyl CoA carboxylase, fatty acid synthetase, carnitine palmitoyl-transferase, glycerol phosphate acyltransferase and acetyl CoA synthetase). Moreover, the close connections were also found between biochemical and apical effects. Notably, the connections were different in multi- and trans-generational effects, which urged further studies to reveal the response strategies underlying the exposure scenarios.
Collapse
Affiliation(s)
- Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Lei Wang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Mengbo Liu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| |
Collapse
|
5
|
Vidane Arachchige Chamila Samarasinghe S, Krishnan K, John Aitken R, Naidu R, Megharaj M. Multigenerational effects of TiO 2 rutile nanoparticles on earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122376. [PMID: 37586686 DOI: 10.1016/j.envpol.2023.122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/30/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Nanoparticles have gained considerable attention as one of the pollutants released into the environment through consumer products. This study describes the sub-chronic and generational effects of TiO2 (rutile) nanoparticles on earthworms over a 252-day duration, with exposure ranging from 0.1 to 1000 mg kg-1. Results indicate that sub-chronic exposure (28 days) of TiO2 nanoparticles did not cause notable adverse effects on the weight, reproduction, and tissue accumulation in parent earthworms. However, the F1 generation displayed remarkable growth and maturity retardation during their early developmental stages, even at lower nano-TiO2 (rutile). Significant impacts on the reproduction of the F1 generation were observed solely at the highest concentration (1000 mg kg-1), which is predicted to be below the highest exposure scenario. Moreover, long-term (252 days) exposure resulted in considerable bioaccumulation of Ti metal in the F1 generation of E. fetida. This study uncovers the negative effects of TiO2 rutile nanoparticles on earthworms across two generations, with pronounced effects on the growth, maturity, and bioaccumulation in the F1 generation compared to the parent generation. These findings suggest the potential induction of toxic effects by TiO2 rutile nanoparticles, emphasizing the sensitivity of juvenile parameters over adult parameters in toxicity assessments. Furthermore, the study highlights the urgent need for comprehensive evaluations of the longer-term toxicity of nanoparticles on terrestrial organisms. Implementing multigenerational studies will contribute significantly to a better understanding of nanoparticle ecotoxicity on environmental organisms.
Collapse
Affiliation(s)
- Samarasinghe Vidane Arachchige Chamila Samarasinghe
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, NSW, 2308, Australia; Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kannan Krishnan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, NSW, 2308, Australia.
| |
Collapse
|
6
|
Lu X, He Y, Liu Y, Wang XP, Xue YL, Zheng ZY, Duan SY, Kong HL, Zhang RZ, Huang JL, Deng J, Duan P. Intergenerational toxic effects of parental exposure to [C n mim]NO 3 (n = 2,4,6) on nervous and skeletal development in zebrafish offspring. ENVIRONMENTAL TOXICOLOGY 2023; 38:2204-2218. [PMID: 37300850 DOI: 10.1002/tox.23858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/21/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Ionic liquids (ILs) are thought to have negative effects on human health. Researchers have explored the effects of ILs on zebrafish development during the early stages, but the intergenerational toxicity of ILs on zebrafish development has rarely been reported. Herein, parental zebrafish were exposed to different concentrations (0, 12.5, 25, and 50 mg/L) of [Cn mim]NO3 (n = 2, 4, 6) for 1 week. Subsequently, the F1 offspring were cultured in clean water for 96 h. [Cn mim]NO3 (n = 2, 4, 6) exposure inhibited spermatogenesis and oogenesis in F0 adults, even causing obvious lacunae in the testis and atretic follicle oocytes in ovary. After parental exposure to [Cn mim]NO3 (n = 2, 4, 6), the body length and locomotor behavior were measured in F1 larvae at 96 hours post-fertilization (hpf). The results showed that the higher the concentration of [Cn mim]NO3 (n = 2, 4, 6), the shorter the body length and swimming distance, and the longer the immobility time. Besides, a longer alkyl chain length of [Cn mim]NO3 had a more negative effect on body length and locomotor behavior. RNA-seq analysis revealed several downregulated differentially expressed genes (DEGs)-grin1b, prss1, gria3a, and gria4a-enriched in neurodevelopment-related pathways, particularly the pathway for neuroactive ligand-receptor interaction. Moreover, several upregulated DEGs, namely col1a1a, col1a1b, and acta2, were mainly associated with skeletal development. Expression of DEGs was tested by RT-qPCR, and the outcomes were consistent with those obtained from RNA-Seq. We provide evidence showing the effects of parental exposure to ILs on the regulation of nervous and skeletal development in F1 offspring, demonstrating intergenerational effects.
Collapse
Affiliation(s)
- Xin Lu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yue Liu
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xin-Ping Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yu-Ling Xue
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Union training base of Jinzhou Medical University, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Zi-Yi Zheng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Su-Yang Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hong-Liang Kong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Rong-Zhi Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-Long Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jie Deng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, College of Pharmacy, Hubei University of Medicine, China
| |
Collapse
|
7
|
Wang L, Deng XQ, Cai JY, Liang WW, Du YQ, Hu XL. Chronic and intergenerational toxic effects of 1-decyl-3-methylimidazolium hexafluorophosphate on the water flea, Moina macrocopa. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:699-710. [PMID: 37378816 DOI: 10.1007/s10646-023-02674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
With the increasing use and production of "green solvents" ionic liquids (ILs) and their known stability in the environment, the potential adverse effects of ILs have become a focus of research. In the present study, acute, chronic, and intergenerational toxic effects of an imidazolium-based ionic liquid, 1-decyl-3-methylimidazolium hexafluorophosphate ([Demim]PF6), on Moina macrocopa were investigated following the parental exposure. The results showed that [Demim]PF6 exhibited high toxicity to M. macrocopa, and the long-term exposure significantly inhibited the survivorship, development, and reproduction of the water flea. Furthermore, it is also observed that [Demim]PF6 induced toxic effects in the following generation of M. macrocopa, resulting in the complete cessation of reproduction in the first offspring generation, and the growth of the organisms was also significantly affected. These findings provided a novel insight into the intergenerational toxicity induced by ILs to crustaceans and suggested that these compounds pose potential risks to the aquatic ecosystem.
Collapse
Affiliation(s)
- Lu Wang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xiao Quan Deng
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Jin Yu Cai
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Wen Wang Liang
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Ying Qi Du
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China
| | - Xue Lei Hu
- School of Biology and Food Engineering, Guangdong University of Education, Guangzhou, 510303, People's Republic of China.
| |
Collapse
|
8
|
Wang L, Wu D, Yu Z, Huang S, Zhang J. Hormone-mediated multi- and trans-generational reproductive toxicities of 1-ethyl-3-methylimidazolium hexafluorophosphate on Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160958. [PMID: 36535467 DOI: 10.1016/j.scitotenv.2022.160958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Ionic liquids (ILs) are emergent pollutants and their reproductive toxicities show hormesis, earning attentions on their environmental risk. Yet, their reproductive effects over generations and the mechanisms were seldom explored. In the present study, the reproductive effects of 1-ethyl-3-methylimidazolium hexafluorophosphate ([C2mim]PF6) on Caenorhabditis elegans were measured in 11 continuously exposed generations (F1 to F11) to explore the multi-generational effects, and also in the non-exposed generations of F1 and F11 (i.e., their great-grand-daughters, T4 and T4') to explore the trans-generational effects. In multi-generational reproductive effects, there were concentration-dependent hormetic effects with hazard-benefit alteration between low and high concentrations (e.g., in F3). There were also generation-dependent hormetic effects with hazard-benefit alterations over generations (e.g., between F4 and F5, between F8 and F9, and between F10 and F11). Meanwhile, the results also showed benefit-hazard alteration between F2 and F3, between F6 and F7, and between F9 and F10. Trans-generational effects showed common inhibitions in T4 and T4' at both low and high concentrations. In the biochemical analysis, hormones and hormone-like substances including progesterone (P), estradiol (E2), prostaglandin (PG) and testosterone (T) showed multi- and trans-generational changes with inhibition and stimulation, which contributed to the reproductive outcomes in each generation. Such contribution was also observed in the hormones' precursor cholesterol and the proteins that are essential for reproduction including vitellogenin (Vn) and major sperm protein (MSP). Moreover, the biochemicals showed significant involvement in the connection among generations. Furthermore, the multi- and trans-generational effects of [C2mim]PF6 and histidine showed similar modes of actions despite some differences, implying the contribution of their shared imidazole structure.
Collapse
Affiliation(s)
- Lei Wang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Di Wu
- Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shidi Huang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
9
|
Zhao Y, Chen J, Wang R, Pu X, Wang D. A review of transgenerational and multigenerational toxicology in the in vivo model animal Caenorhabditis elegans. J Appl Toxicol 2023; 43:122-145. [PMID: 35754092 DOI: 10.1002/jat.4360] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
A large number of pollutants existing in the environment can last for a long time, and their potential toxic effects can transfer from parents to their offspring. Thus, it is necessary to investigate the toxicity of environmental pollutants across multigenerations and the underlying mechanisms in organisms. Due to its short life cycle and sensitivity to environmental exposures, Caenorhabditis elegans is an important animal model for toxicity assessment of environmental pollutants across multigenerations. In this review, we introduced the transgenerational and multigenerational toxicity caused by various environmental pollutants in C. elegans. Moreover, we discussed the underlying mechanisms for the observed transgenerational and multigenerational toxicity of environmental contaminants in C. elegans.
Collapse
Affiliation(s)
- Yunli Zhao
- Medical School, Southeast University, Nanjing, China.,School of Public Health, Bengbu Medical College, Bengbu, China
| | - Jingya Chen
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Rui Wang
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Xiaoxiao Pu
- School of Public Health, Bengbu Medical College, Bengbu, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Zhang J, Zheng Y, Yu Z. Reproductive toxicities of ofloxacin and norfloxacin on Caenorhabditis elegans with multi-generational oscillatory effects and trans-generational residual influences. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103962. [PMID: 35998805 DOI: 10.1016/j.etap.2022.103962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The reproductive toxicities over generations are essential to assess the long-term impacts environmental fluoroquinolone antibiotics (FQs). In the present study, the multi-generational effects of ofloxacin (OFL) and norfloxacin (NOR) on reproduction were studied on Caenorhabditis elegans from 9 successive generations (F1-F9). Results showed that OFL showed no effects in F1, stimulation in F2 to F4, and inhibition F5 to F9. The effects of NOR also showed oscillation between stimulation and inhibition across generations. Further biochemical analysis demonstrated that the reproductive toxicities of OFL and NOR were more closely connected with total cholesterol (TCHO), progesterone (P) and testosterone (T), than major sperm protein (MSP) and vitellogenin (Vn). Moreover, OFL and NOR also showed significant trans-generational reproductive toxicities in T4 and T4', the great-grand-daughter of F1 and F9. Differences between T4 and T4' and between OFL and NOR, indicated influences of multi-generational exposure and urged more exploration on different mechanisms between FQs.
Collapse
Affiliation(s)
- Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Yungu Zheng
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China
| | - Zhenyang Yu
- Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang 314051, PR China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
11
|
Agathokleous E, Moore MN, Calabrese EJ. Environmental hormesis: A tribute to Anthony Stebbing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154996. [PMID: 35417830 DOI: 10.1016/j.scitotenv.2022.154996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing 210044, China.
| | - Michael N Moore
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, UK; Plymouth Marine Laboratory, Plymouth, Devon, UK; School of Biological & Marine Sciences, University of Plymouth, Plymouth, UK
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Agathokleous E. The hormetic response of heart rate of fish embryos to contaminants - Implications for research and policy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152911. [PMID: 34999064 DOI: 10.1016/j.scitotenv.2021.152911] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Evidence of contaminant-induced hormesis is rapidly accumulating, while the underlying mechanisms of hormesis are becoming increasingly understood. Recent developments in this research area, and especially the emergence of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) as the master mechanism, suggest that contaminants can induce cardiac hormetic responses. This paper collates significant evidence of hormetic response of the heart rate of fish embryos to contaminants, in particular antibiotics, microplastics, and herbicides, characterized by a low-dose increase (tachycardia) and a high-dose decrease (bradycardia). The increase often occurs at doses about 100-800 times smaller than the no-observed-adverse-effect-level (NOAEL). There are also indications for even triphasic responses, which include a sub-hormetic decrease of the heart rate by doses over 106 times smaller than the NOAEL. Such sub-NOAEL effects cannot be captured by linear-no-threshold (LNT) and threshold models, raising concerns about environmental health and highlighting the pressing need to consider hormetic responses in the ecological risk assessment. A visionary way forward is proposed, but addressing this research bottleneck would require improved research designs with enhanced ability and statistical power to study diphasic and triphasic responses of heart rate.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), 219 Ningliu Rd., Nanjing 210044, China.
| |
Collapse
|