1
|
Fan T, Xu Y, Dong S, Zhou Z, Tan Y, Wang Q, Csikós N. Divergent contribution of environmental factors to soil organic and inorganic carbon in different land use types in a forest-grassland ecotone of Inner Mongolia, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123875. [PMID: 39742767 DOI: 10.1016/j.jenvman.2024.123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Understanding the comprehensive impacts of environmental factors on soil organic carbon (SOC) and soil inorganic carbon (SIC) in different land use types is of great significance for sustainable soil management. Least absolute shrinkage and selection operator (LASSO) and structural equation modelling were applied to reveal the driving mechanism of SOC, SIC and the ratio between SOC to SIC (SOC/SIC) in three major land use types (forest, grassland and farmland) in a forest-grassland ecotone (FGE) of Inner Mongolia, Northeast China. Mean annual temperature (MAT), mean annual temperature (MAP) and Enhanced Vegetation Index (EVI) were selected by LASSO as the three most important environmental factors affecting SOC, SIC and SOC/SIC in all land use types. MAT had the strongest direct effects on SOC in forest and grassland among all the environmental factors, suggesting temperature was the most important control factor of SOC in forest and grassland. EVI had relatively strong indirect effects on SOC by influencing total nitrogen and total phosphorus in grassland and farmland, respectively. MAT and MAP had significantly direct effects on SIC in all land use types, demonstrating the balance between precipitation and evapotranspiration affected by temperature were the major control factors of SIC. In addition, MAT had significantly positive direct effects (>42%) on SOC/SIC in all land use types, suggesting climate warming can have positive feedbacks on the proportion of SOC in the soil carbon pool in FGE. This study provides a comprehensive understanding of the driving mechanism of SOC, SIC and SOC/SIC in FGE of Northeast China.
Collapse
Affiliation(s)
- Tengfei Fan
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Yiming Xu
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China.
| | - Zidong Zhou
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Youquan Tan
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Qingpu Wang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Nándor Csikós
- HUN-REN Institute of Soil Sciences, Centre for Agricultural Research, Fehérvári út 132-144, 1114, Budapest, Hungary
| |
Collapse
|
2
|
Wei L, Wang Y, Li N, Zhao N, Xu S. Bacteria-Like Gaiella Accelerate Soil Carbon Loss by Decomposing Organic Matter of Grazing Soils in Alpine Meadows on the Qinghai-Tibet Plateau. MICROBIAL ECOLOGY 2024; 87:104. [PMID: 39110233 PMCID: PMC11306262 DOI: 10.1007/s00248-024-02414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The alpine meadows of the Qinghai-Tibet Plateau have significant potential for storing soil carbon, which is important to global carbon sequestration. Grazing is a major threat to its potential for carbon sequestration. However, grazing poses a major threat to this potential by speeding up the breakdown of organic matter in the soil and releasing carbon, which may further lead to positive carbon-climate change feedback and threaten ecological security. Therefore, in order to accurately explore the driving mechanism and regulatory factors of soil organic matter decomposition in grazing alpine meadows on the Qinghai-Tibet Plateau, we took the grazing sample plots of typical alpine meadows as the research object and set up grazing intensities of different life cycles, aiming to explore the relationship and main regulatory factors of grazing on soil organic matter decomposition and soil microorganisms. The results show the following: (1) soil microorganisms, especially Acidobacteria and Acidobacteria, drove the decomposition of organic matter in the soil, thereby accelerating the release of soil carbon, which was not conducive to soil carbon sequestration in grassland; (2) the grazing triggering effect formed a positive feedback with soil microbial carbon release, accelerating the decomposition of organic matter and soil carbon loss; and (3) the grazing ban and light grazing were more conducive to slowing down soil organic matter decomposition and increasing soil carbon sequestration.
Collapse
Affiliation(s)
- Lin Wei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Qinghai, China
| | - Yalin Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Na Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Qinghai, China.
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Qinghai, China.
| |
Collapse
|
3
|
Ma Y, Feng S, Huang Q, Liu Q, Zhang Y, Niu Y. Distribution characteristics of soil carbon density and influencing factors in Qinghai-Tibet Plateau region. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:152. [PMID: 38578358 DOI: 10.1007/s10653-024-01945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The Qinghai-Tibet Plateau has low anthropogenic carbon emissions and large carbon stock in its ecosystems. As a crucial region in terrestrial ecosystems responding to climate change, an accurate understanding of the distribution characteristics of soil carbon density holds significance in estimating the soil carbon storage capacity in forests and grasslands. It performs a crucial role in achieving carbon neutrality goals in China. The distribution characteristics of carbon and carbon density in the surface, middle, and deep soil layers are calculated, and the main influencing factors of soil carbon density changes are analyzed. The carbon density in the surface soil ranges from a minimum of 1.62 kg/m2 to a maximum of 52.93 kg/m2. The coefficient of variation for carbon is 46%, indicating a considerable variability in carbon distribution across different regions. There are substantial disparities, with geological background, land use types, and soil types significantly influencing soil organic carbon density. Alpine meadow soil has the highest carbon density compared with other soil types. The distribution of soil organic carbon density at three different depths is as follows: grassland > bare land > forestland > water area. The grassland systems in the Qinghai-Tibet Plateau have considerable soil carbon sink and storage potential; however, they are confronted with the risk of grassland degradation. The grassland ecosystems on the Qinghai-Tibet Plateau harbor substantial soil carbon sinks and storage potential. However, they are at risk of grassland degradation. It is imperative to enhance grassland management, implement sustainable grazing practices, and prevent the deterioration of the grassland carbon reservoirs to mitigate the exacerbation of greenhouse gas emissions and global warming. This highlights the urgency of implementing more studies to uncover the potential of existing grassland ecological engineering projects for carbon sequestration.
Collapse
Affiliation(s)
- Ying Ma
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Siyao Feng
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China
| | - Qiang Huang
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Qingyu Liu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| | - Yuqi Zhang
- College of Resources and Environment, Yangtze University, 111 University Road, Wuhan, China.
| | - Yao Niu
- Fifth Institute of Geological and Exploration of Qinghai Province, Xining, 810000, China
| |
Collapse
|
4
|
Wang J, Xu X, Liu Y, Wang W, Ren C, Guo Y, Wang J, Wang N, He L, Zhao F. Unknown bacterial species lead to soil CO 2 emission reduction by promoting lactic fermentation in alpine meadow on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167610. [PMID: 37804990 DOI: 10.1016/j.scitotenv.2023.167610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Highly variable soil microbial respiration among grasslands has been identified as a major cause of uncertainty in regional carbon (C) budget estimation in the Qinghai-Tibetan Plateau; microbial metabolism mechanisms might explain this variation, but remain elusive. Therefore, we investigated soil CO2 production in incubated soils and detected the associated functional genes at four sampling sites from two major alpine grasslands on the Qinghai-Tibetan Plateau. The results showed that the cumulative CO2 emissions from alpine meadow soils were 71 %-83 % lower than those from alpine steppe soils. Both the enriched genes abundance encoding fermentation and glycolysis (Embden-Meyerhof pathway (EMP)) and the diminished genes encoding tricarboxylic acid cycle (TCA) and phosphate pentose pathway (PPP) explained the CO2 emission reduction in the alpine meadow soils. The EMP: PPP and fermentation: TCA cycle ratios in alpine meadow soils were 1.45- and 1.50-fold higher than those in alpine steppe soils, respectively. Such shifts in metabolic pathways were primarily caused by the increasing dominance of an unknown species of Desulfobacteraceae with high glycolytic potential, carrying a higher abundance of ldh genes during fermentation. These unknown species were promoted by warmer temperatures and higher precipitation in the alpine meadows. Further studies on the unknown species would enhance our understanding and predictability of C cycling in alpine grasslands.
Collapse
Affiliation(s)
- Jieying Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xiaofeng Xu
- Department of Biology, San Diego State University, San Diego 92182, USA
| | - Yanfang Liu
- Center of Physics and Chemistry, Department of Science and Technology, Qinghai Normal University, Xining 810008, China
| | - Wenying Wang
- Center of Physics and Chemistry, Department of Science and Technology, Qinghai Normal University, Xining 810008, China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaoxin Guo
- The College of Life Sciences, Northwest University, Xi'an 710072, Shaanxi, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi 710127, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; Carbon Neutrality College (Yulin), Northwest University, Xi'an, Shaanxi 710127, China
| | - Ninglian Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China
| | - Liyuan He
- Department of Biology, San Diego State University, San Diego 92182, USA.
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi 710127, China; Carbon Neutrality College (Yulin), Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
5
|
Zhou X, Ma A, Chen X, Zhang Q, Guo X, Zhuang G. Climate Warming-Driven Changes in the Molecular Composition of Soil Dissolved Organic Matter Across Depth: A Case Study on the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16884-16894. [PMID: 37857299 DOI: 10.1021/acs.est.3c04899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Dissolved organic matter (DOM) is critical for soil carbon sequestration in terrestrial ecosystems. DOM molecular composition varies with soil depth. However, the spatial heterogeneity of depth-dependent DOM in response to climate warming remains unclear, especially in alpine ecosystems. In this study, the DOM of alpine meadow soil samples was characterized comprehensively by using spectroscopy and mass spectrometry, and open-top chambers (OTCs) were employed to simulate warming. It was found that climate warming had the greatest impact on the upper layer (0-30 cm), followed by the lower layer (60-80 cm), while the middle layer (30-60 cm) was the most stable among the three soil layers. The reasons for the obvious changes in DOM in the upper and lower layers of soil were further explained based on biotic and abiotic factors. Specifically, soil nutrients (NH4+-N, NO3--N, TC, and TP) affected the molecular composition of DOM in layer L1 (0-15 cm), while pH affected layer L5 (60-80 cm). Gemmatimonadetes, Proteobacteria, and Actinobacteria played important roles in the composition of DOM in the L5 layer (60-80 cm), while the dominant fungal groups affecting the DOM composition increased in the L1 layer (0-15 cm) under warming. In summary, this research has contributed to a deeper understanding of depth-dependent changes in DOM molecular composition in alpine ecosystems.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianke Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101400, China
- Sino-Danish Center for Education and Research, Beijing 101400, China
| | - Qinwei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Guo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Yang F, Fu Q, Antonietti M. Anthropogenic, Carbon-Reinforced Soil as a Living Engineered Material. Chem Rev 2023; 123:2420-2435. [PMID: 36633446 PMCID: PMC9999422 DOI: 10.1021/acs.chemrev.2c00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, the simple synthesis of artificial humic substances (A-HS) by alkaline hydrothermal processing of waste biomass was described. This A-HS was shown to support water and mineral binding, to change soil structure, to avoid fertilizer mineralization, and to support plant growth. Many of the observed macroscopic effects could, however, not be directly related to the minute amounts of A-HS which have been added, and an A-HS stimulated microbiome was found to be the key for understanding. In this review, we describe such anthropogenic soil in the language of the modern concept of living engineered materials and identify natural and artificial HS as the enabler to set up the interactive microbial system along the interfaces of the mineral grains. In that, old chemical concepts as surface activity, redox mediation, and pH buffering are the base of the system structure build-up and the complex self-adaptability of biological systems. The resulting chemical/biological hybrid system has the potential to address world problems as soil fertility, nutrition of a growing world population, and climate change.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.,Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Markus Antonietti
- Department of Colloid Chemistry,Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Integrated Omics Approach to Discover Differences in the Metabolism of a New Tibetan Desmodesmus sp. in Two Types of Sewage Treatments. Metabolites 2023; 13:metabo13030388. [PMID: 36984828 PMCID: PMC10058882 DOI: 10.3390/metabo13030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Microalgae are now widely applied in municipal (YH_3) and industrial sewage (YH_4) treatments. Through integrated omics analysis, we studied the similarities and differences at the molecular level between the two different types of sewage treatment processes. The most significantly enriched gene ontology (GO) terms in both types of sewage treatments were the ribosome, photosynthesis, and proteasome pathways. The results show that the pathways of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were enriched for photosynthesis, glyoxylate and dicarboxylate metabolism, and carbon fixation in photosynthetic organisms. Considering YH_3 vs. YH_4, the metabolism of citrate, sedoheptulose-7P, and succinate was significantly upregulated. In addition, the results showed that the pathways of DEGs and DAMs were enriched in terms of amino acid metabolism and carotenoid biosynthesis in YH_4 vs. YH_3. The metabolism of S-Adenosyl-L-homocysteine was significantly downregulated, 2-oxobutanoate was significantly upregulated and downregulated, and the metabolism of abscisic acid glucose ester (ABA-GE) was also significantly upregulated. Overall, the results of this paper will help to improve the basic knowledge of the molecular response of microalgae to sewage treatments, and help design a response strategy based on microalgae for complex, mixed sewage treatments.
Collapse
|
8
|
Xu G, Kang X, Li W, Li Y, Chai Y, Wu S, Zhang X, Yan Z, Kang E, Yang A, Niu Y, Wang X, Yan L. Different grassland managements significantly change carbon fluxes in an alpine meadow. FRONTIERS IN PLANT SCIENCE 2022; 13:1000558. [PMID: 36311073 PMCID: PMC9606693 DOI: 10.3389/fpls.2022.1000558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Alpine meadow plays vital roles in regional animal husbandry and the ecological environment. However, different grassland managements affect the structure and function of the alpine meadow. In this study, we selected three typical grassland managements including free grazing, enclosure, and artificial grass planting and conducted a field survey to study the effects of grassland managements on carbon fluxes in an alpine meadow. The carbon fluxes were observed by static chamber and environmental factors including vegetation and soil characteristics were measured simultaneously. Our results show that the alpine meadow was a CO2 and CH4 sink, and grassland managements had a significant effect on all CO2 fluxes, including gross ecosystem production (GEP, P< 0.001), net ecosystem production (NEP, P< 0.001) and ecosystem respiration (ER, P< 0.001) but had no significant effect on CH4 fluxes (P > 0.05). The ranking of GEP under the different grassland managements was enclosure > free grazing > artificial grass planting. Furthermore, NEP and ER at enclosure plots were significantly higher than those of the free grazing and artificial grass planting plots. In addition, different grassland managements also affected the vegetation and soil characteristics of the alpine meadow. The aboveground biomass of artificial grass planting was significantly higher than that of the free grazing and enclosure plots. The vegetation coverage under three different grassland managements was ranked in the order of enclosure > artificial grass planting > free grazing and significant differences were observed among them. Moreover, significant differences in the number of species (P< 0.01) and the Margalef richness index (P< 0.05) were detected under three different grassland managements. Further analysis of the relationship between environmental factors and carbon fluxes revealed that GEP and NEP of the alpine meadow were positively correlated with vegetation coverage, the number of species, and the Margalef richness index. Therefore, grassland restoration should be configured with multiple species, which could improve carbon sink capacity while considering the functions of grassland restoration and production.
Collapse
Affiliation(s)
- Ganjun Xu
- Institute of Northwest Surveying and Planning, National Forestry and Grassland Administration, Xi’an, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Wei Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Yongyu Chai
- Institute of Northwest Surveying and Planning, National Forestry and Grassland Administration, Xi’an, China
| | - Shengyi Wu
- Institute of Northwest Surveying and Planning, National Forestry and Grassland Administration, Xi’an, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Enze Kang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Yuechuan Niu
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, Sichuan, China
- Beijing Key Laboratory of Wetland Services and Restoration, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|