1
|
Liang L, Cai SQ, Leng YL, Huang C, Liu YQ, Wang Y, Luo L, Han M, Li XH, Cai XH. Intelligent sensing platform based on europium-doped carbon dots for dual-functional detection of ciprofloxacin/Ga 3+ and its tracking in vivo. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136622. [PMID: 39591936 DOI: 10.1016/j.jhazmat.2024.136622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Ciprofloxacin (CIP) and gallium (Ga) are widely used in many fields and their excessive presences will pose serious threats to the environment and life health. Therefore, developing an intelligent detection method for rapidly tracking and determination of CIP and Ga3⁺ concentration in environments and organisms is of great significance. In this work, a europium-doped carbon dots (Eu-CDs) with unique structure and performances was prepared by a one-pot hydrothermal method. Eu-CDs can efficiently overcome the problem of aggregation-induced fluorescence quenching in complex environments to track CIP and Ga3⁺ with highly sensitivity. The "antenna effect" of non-radiative energy transfer is introduced to explain the pathway on fluorescence transition of Eu-CDs through DFT theoretical calculations and mechanism investigations, which provide a theoretical basis for the design and development of novel carbon dots with specific functions. Eu-CDs can successfully be applied to fluorescence imaging in organisms, moreover, it also exhibits excellent application potentials in the field of anti-tumor and antibacterial. In addition, a portable intelligent detection platform based on Eu-CDs-hydrogel device have been developed, which provides a new strategy for rapidly detection of CIP and Ga3⁺ in real samples.
Collapse
Affiliation(s)
- Le Liang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Su-Qian Cai
- School of Pharmaceutical Sciences, Guilin Medical University, Guilin 541199, Guangxi, PR China
| | - Yan-Li Leng
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Chan Huang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yong-Qing Liu
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Ye Wang
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Li Luo
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Mei Han
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Xiao-Hong Li
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Xiao-Hua Cai
- School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Li JA, Pan N, Qi Z, He J, Wei Y, Chen W, Qu JB, Wang X, Huang F. Gold nanoclusters stabilized with dopa-containing ligands: Catalyst-indicator integrated probe for tumor cell screening. Talanta 2025; 282:126980. [PMID: 39368331 DOI: 10.1016/j.talanta.2024.126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Elevated hydrogen peroxide (H2O2) levels not only inflict cellular damage but also serve as a harbinger for various diseases. Tumor cells, in particular, often exhibit an abundance of H2O2. Hence, the detection of this pivotal molecule assumes paramount importance in monitoring physiological states and expediting cancer diagnosis. To this end, we have ingeniously devised an enzyme-free and monomeric system for intracellular H2O2 detection. Our astute selection of dopa-containing peptidomimetics, replete with ortho-bisphenol and amino acid moieties, has engendered the synthesis of distinctive fluorescent gold nanoclusters (AuNCs). These nanoclusters not only function as a peroxidase-like catalyst, catalyzing the decomposition of H2O2 into hydroxyl radicals (·OH), but also serve as an indicator, with their fluorescence quenched in response to varying H2O2 concentrations. Experimental results evince that our GDpE-AuNCs exhibit remarkable sensitivity, boasting a detection limit of 0.49 μM and a linear range of 5-1000 μM. Moreover, the amalgamation of catalyst and indicator within a single structure, facilitating efficient cellular uptake, engenders intracellular H2O2 detection and discernment of tumor cells. This pioneering approach bequeaths a valuable assay probe for monitoring physiological states and ushering in early disease diagnosis.
Collapse
Affiliation(s)
- Jin-Ao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Nana Pan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zichun Qi
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiahua He
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yifan Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Weilong Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jian-Bo Qu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
3
|
Wang G, Zhang S, Cui J, Gao W, Rong X, Lu Y, Gao C. Novel highly selective fluorescence sensing strategy for Mercury(Ⅱ) in water based on nitrogen-doped carbon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122010. [PMID: 36308826 DOI: 10.1016/j.saa.2022.122010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
In this work, a fluorescent signal-closing probe of nitrogen-doped carbon quantum dots (NCQDs) was developed for quantitative detection of mercury ions (Hg2+). In this detection system, the NCQDs with high quantum yield (QY, 63.80 %) were synthesized via simple hydrothermal method with Methyl Glycine Diacetic acid Trisodium Salt (MGDA) and m-phenylenediamine (MPD) as carbon and nitrogen sources. The NCQDs have a typical surface structure and exceptional fluorescence stability, and their fluorescence zones are centered on excitation wavelengths of 440 nm and emission wavelengths of 510 nm. Under optimal conditions, the NCQDs have outstanding anti-interference ability to various ions and high selectivity to mercury ions. The fluorescence intensity of the detection system is weakened due to the generation of non-fluorescent groups caused by the static quenching effect. The fluorescence quenching efficiency shows a fascinating linear relationship with Hg2+ ions at 0-100 μM (y = 0.0051x-0.015, R2 = 0.9943), and the detection limit is 0.9 μM. Acute toxicity test shows that NCQDs have low toxicity and little harm to environment. The detection system can be used for the quantification of mercury ions in environmental water samples, and the recovery rate is between 99.64 % and 103.43 %, indicating that it is a simple and economical fluorescence detection method.
Collapse
Affiliation(s)
- Guiqiao Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China.
| | - Shurong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Jinzhi Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Wensu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Xing Rong
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Yaxin Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Dong B, Qu H, Yan L, Liu C, Mao Y, Zheng L. Colorimetric detection of 2-tert-butyl-1,4-benzoquinone in edible oils based on a chromogenic reaction with commercial chemicals. Food Chem 2023; 400:134037. [DOI: 10.1016/j.foodchem.2022.134037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
|
5
|
Speciation and transformation of nitrogen for swine manure thermochemical liquefaction. Sci Rep 2022; 12:12056. [PMID: 35835911 PMCID: PMC9283412 DOI: 10.1038/s41598-022-16101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/05/2022] [Indexed: 12/05/2022] Open
Abstract
The nitrogen conversion mechanism of swine manure by thermochemical liquefaction with ethanol as solvent was investigated at a lower temperature range (180–300 °C). The fate of nitrogen in liquid phase products, bio-oil and biochar was evaluated by XPS, GC–MS and other methods. After thermochemical liquefaction, most of the nitrogen in swine manure was transferred to biochar (63.75%). As the temperature increased to 220 °C, the biochar-N yields decreased to 43.29%, accompanied by an increase in bio-oil-N and liquid phase product-N by 7.99% and 1.26% respectively. The results indicated that increasing the temperature could facilitate solid nitrogen structure cracking into bio-oil-N. Amines and heterocyclic nitrogen from protein peptide bond cracking and Maillard reactions made up the main nitrogen compounds in bio-oil, and high temperatures favored the further cyclization and condensation of heterocyclic nitrogen (e.g., indole, quinoline). In the case of biochar, the inorganic nitrogen disappeared at 260 °C and was obviously transformed into liquid phase products. The rising temperature promoted the polymerization of pyridine nitrogen and pyrrole nitrogen, which formed more stabilized nitrogen formation (such as quaternary nitrogen). Nitrogen conversion and possible reaction schematics during swine manure thermochemical liquefaction were explored in this study.
Collapse
|
6
|
Lee DW, Lim HM, Lee JY, Min KB, Shin CH, Lee YA, Hong YC. Prenatal exposure to phthalate and decreased body mass index of children: a systematic review and meta-analysis. Sci Rep 2022; 12:8961. [PMID: 35624195 PMCID: PMC9142490 DOI: 10.1038/s41598-022-13154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/29/2022] [Indexed: 01/24/2023] Open
Abstract
Phthalates are well-known endocrine-disrupting chemicals. Many detrimental health effects of phthalates were investigated, but studies on the association of phthalates with obesity in children showed inconsistent results. Thus, this systematic review and meta-analysis were performed to clarify whether prenatal and postnatal exposures to phthalates are associated with physical growth disturbances in children. We performed the systematic review and meta-analysis following the PRISMA 2020 statement guidelines, and found 39 studies that met our inclusion criteria, including 22 longitudinal and 17 cross-sectional studies. We observed a significant negative association between the prenatal exposure to DEHP and the body mass index (BMI) z-score of the offspring (β = - 0.05; 95% CI: - 0.10, - 0.001) in the meta-analysis, while no significant association between the prenatal exposure to DEHP and the body fat percentage of the offspring was observed (β = 0.01; 95% CI: - 0.41, 0.44). In the systematic review, studies on the association between phthalates exposure in childhood and obesity were inconsistent. Prenatal exposure to phthalates was found to be associated with decreased BMI z-score in children, but not associated with body fat percentage. Our findings suggest that phthalates disturb the normal muscle growth of children, rather than induce obesity, as previous studies have hypothesized.
Collapse
Affiliation(s)
- Dong-Wook Lee
- Public Healthcare Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hyun-Mook Lim
- COMWEL Daejeon Hospital, Korea Workers' Compensation & Welfare Service, Daejeon, Republic of Korea
| | - Joong-Yub Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Kyung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Choong-Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Young-Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Yun-Chul Hong
- Department of Humans Systems Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|