1
|
Haenni M, Murri S, Lefrère C, Larsen J, Drapeau A, Botman J, François P, Gourlay P, Meurens F, Madec JY. Methicillin-resistant and methicillin-susceptible Staphylococcus aureus in French hedgehogs admitted to a wildlife health center. One Health 2024; 19:100938. [PMID: 39650146 PMCID: PMC11621504 DOI: 10.1016/j.onehlt.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
The mecC gene conferring methicillin-resistance has always been found on a SCCmec type XI element and is largely restricted to the few clonal complexes CC130, CC1943, CC425, CC49 and CC599. The occurrence of the mecC gene in many different hosts highlighted its One Health importance, even though European hedgehogs (Erinaceus europaeus) are considered its natural reservoir, most probably because of the selective pressure imposed by beta-lactam-producing dermatophytes (Trichophyton erinacei) that colonize the skin of these mammals. Surprisingly, while the presence of T. erinacei on the French territory has been proven, no mecC-positive methicillin-resistant Staphylococcus aureus (MRSA) isolate has been reported yet from hedgehogs. We thus sampled 139 hedgehogs brought to a wildlife center; 128 were S. aureus carriers and 25 (18.0 %) presented a MRSA isolate, of which 21 (15.1 %) displayed the mecC gene. All 161 S. aureus collected were whole-genome sequenced. The mecC-MRSA belonged to the classical CCs, i.e. CC130, CC1943 and CC49. The majority (98/139, 70.5 %) of the methicillin-susceptible Staphylococcus aureus (MSSA) isolates also belonged to these three CCs. A phylogenetic comparison with mecC-MRSA isolates from all over Europe and New-Zealand showed local adaptations, despite the fact that they all belonged to the same CCs. The acquisition of the SCCmec type XI element by a concomitant MSSA could not be observed in the same animal, but such a transfer might be suggested since identical clones were identified, one MSSA and one MRSA, though in different animals. In parallel, we conducted a detailed analysis of the SCCmec type XI element as well as specific virulence factors (a tst variant and the vwb SaPI gene). Results led us to hypothesize that the mecC gene might be acquired through selective pressure of T. erinacei on MSSA, some of which were acquired a long time ago from ruminants and are now colonizing the skin of the hedgehogs.
Collapse
Affiliation(s)
- Marisa Haenni
- ANSES – Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Séverine Murri
- ANSES – Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | | - Jesper Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Antoine Drapeau
- ANSES – Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Julie Botman
- Oniris VetAgroBio, Centre Hospitalier Universitaire Vétérinaire, Centre Vétérinaire de la Faune Sauvage et des Ecosystèmes (Wildlife Health Centre), Nantes, France
| | - Pauline François
- ANSES – Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Philippe Gourlay
- Oniris VetAgroBio, Centre Hospitalier Universitaire Vétérinaire, Centre Vétérinaire de la Faune Sauvage et des Ecosystèmes (Wildlife Health Centre), Nantes, France
- Oniris, INRAE, BIOEPAR, Nantes, France
| | - François Meurens
- Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S2M2, Canada
| | - Jean-Yves Madec
- ANSES – Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|
2
|
Cagnoli G, Bertelloni F, Bongi P, Piva S, Del Frate M, Scarpellini R, Apollonio M, Ebani VV. Nasal Carriage of Antimicrobial-Resistant Staphylococci by Fallow Deer ( Dama dama) Taken in a Natural Park of Tuscany, Central Italy. Microorganisms 2024; 12:2323. [PMID: 39597713 PMCID: PMC11596207 DOI: 10.3390/microorganisms12112323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Wild animals are recognized as significant reservoirs for various zoonotic pathogens, including antibiotic-resistant bacteria. This study aimed to investigate the presence of Staphylococcus spp. strains in fallow deer (Dama dama) inhabiting a natural preserve in Central Italy and to examine the phenotypic and genotypic antimicrobial resistance and the presence of some virulence genes among the isolates. During July and December 2022, nasal swabs were collected from 175 fallow deer, which were then analyzed through bacteriological cultures. In total, 176 Staphylococcus spp. strains were isolated and subsequently identified using MALDI-TOF mass spectrometry. S. aureus was the most abundant species with 66 (37.5%) strains, followed by S. hyicus, 34 (19.31%) strains, S. sciuri, 32 (18.18%) strains, S. chromogenes, 27 (15.34%) strains, S. xylosus, 11 (6.25%) strains, S. warneri, 5 (2.84%) strains, and S. devriesei, 1 (0.56%) strain. Antimicrobial susceptibility was assessed for each isolate via the agar disk diffusion method, testing a panel of 13 molecules belonging to 9 antimicrobial classes. The highest resistance rates were detected for penicillin (29.55%), rifampicin (22.73%), and amikacin (20.45%). Notably, intermediate susceptibility was observed for erythromycin (61.93%), enrofloxacin (28.41%), and ceftiofur (21.02%). Conversely, the strains exhibited particularly high susceptibility to amoxicillin/clavulanic acid (99.43%), cefoxitin (97.73%), and vancomycin (96.02%). Based on the results, 32 (18.18%) isolates were classified as multidrug-resistant (MDR). Two strains of S. chromogenes and one strain of S. xylosus, both resistant to penicillin, tested positive for the blaZ gene. No methicillin-resistant strains were found, and none of the isolates harbored genes associated with enterotoxin and toxic shock syndrome toxin production. This study highlights the potential role of wildlife, particularly fallow deer, as reservoirs of antibiotic-resistant Staphylococcus spp. strains. Such findings underscore the importance of monitoring wildlife for antimicrobial resistance, which could have implications for public health and veterinary medicine.
Collapse
Affiliation(s)
- Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (G.C.); (V.V.E.)
| | - Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (G.C.); (V.V.E.)
| | - Paolo Bongi
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.B.); (M.D.F.); (M.A.)
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (S.P.); (R.S.)
| | - Marco Del Frate
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.B.); (M.D.F.); (M.A.)
| | - Raffaele Scarpellini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (S.P.); (R.S.)
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (P.B.); (M.D.F.); (M.A.)
| | - Valentina Virginia Ebani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (G.C.); (V.V.E.)
- Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
3
|
Li X, Mowlaboccus S, Jackson B, Cai C, Coombs GW. Antimicrobial resistance among clinically significant bacteria in wildlife: An overlooked one health concern. Int J Antimicrob Agents 2024; 64:107251. [PMID: 38906487 DOI: 10.1016/j.ijantimicag.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a critical global health challenge. However, the significance of AMR is not limited to humans and domestic animals but extends to wildlife and the environment. Based on the analysis of > 200 peer-reviewed papers, this review provides comprehensive and current insights into the detection of clinically significant antimicrobial resistant bacteria and resistance genes in wild mammals, birds and reptiles worldwide. The review also examines the overlooked roles of wildlife in AMR emergence and transmission. In wildlife, AMR is potentially driven by anthropogenic activity, agricultural and environmental factors, and natural evolution. This review highlights the significance of AMR surveillance in wildlife, identifies species and geographical foci and gaps, and demonstrates the value of multifaceted One Health strategies if further escalation of AMR globally is to be curtailed.
Collapse
Affiliation(s)
- Xing Li
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia
| | - Bethany Jackson
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Chang Cai
- School of Information Technology, College of Science, Technology, Engineering and Mathematics, Murdoch University, Perth, Australia
| | - Geoffrey Wallace Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, Fiona Stanley Hospital, Perth, Australia.
| |
Collapse
|
4
|
Lienen T, Mateus-Vargas RH, Steinhoff-Wagner J, Richter MH, Maurischat S. High toxinogenic potential of Staphylococcus aureus from wild ungulates in Brandenburg, Germany with a low level of antibiotic resistance. Front Vet Sci 2024; 11:1445413. [PMID: 39109350 PMCID: PMC11300323 DOI: 10.3389/fvets.2024.1445413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION Data regarding the occurrence and virulence of Staphylococcus (S.) aureus in wild living animals is rare. However, S. aureus may carry a multitude of virulence factors and express resistance to several antimicrobial substances. Handling game meat may thus lead to serious infections or food poisoning. The aim of this study was to provide insights into the occurrence and characteristics of S. aureus in wild ungulates from Brandenburg, Germany. METHODS Nasal swabs of externally healthy-looking wild boars, roe, fallow and red deer were collected in hunts during season 2021/2022 and analyzed for S. aureus by selective enrichment. Species were determined using matrix assisted laser desorption ionization mass spectrometry and tested for phenotypic antimicrobial resistance. Whole-genome sequencing was conducted for genotyping, determination of virulence associated genes and analysis of phylogenetic relationships. RESULTS S. aureus were recovered from approximately 8% of nasal swabs. However, the strains were only obtained from the sampled wild ruminants. S. aureus isolates were associated with sequence types (ST) 1, ST30, ST133, ST425, ST582 and ST6238. Isolates of ST1 clustered closely together in the phylogenetic analysis. Genes encoding staphylococcal enterotoxin (SE) or SE-like (SEl) were found in 14/17 isolates. In particular, a seh gene was present in 12/17 isolates. Moreover, two isolates harbored a multiplicity of genes encoding SE or SEl. In addition, the toxic shock syndrome toxin encoding tst gene was detected in one isolate. This isolate was resistant to penicillin and cefoxitin and accordingly harbored the blaZ gene. DISCUSSION Wild ungulates intended for human consumption may carry potentially virulent S. aureus. In one case, the close phylogenetic relationship of S. aureus isolates indicates a possible intraspecific spread within a common territory. However, for others, the origin or the spread pattern can only be inferred. Handling of animals or their carcasses might contribute to staphylococcal infections in humans. Moreover, food poisoning due to SE producing strains may occur, if recommended hygiene practices are not applied during processing of game meat.
Collapse
Affiliation(s)
- Tobias Lienen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Rafael Hernán Mateus-Vargas
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Julia Steinhoff-Wagner
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- TUM School of Life Sciences, Animal Nutrition and Metabolism,Technical University of Munich, Freising-Weihenstephan, Germany
| | - Martin H. Richter
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
5
|
Fernández-Fernández R, Lozano C, Reuben RC, Ruiz-Ripa L, Zarazaga M, Torres C. Comprehensive Approaches for the Search and Characterization of Staphylococcins. Microorganisms 2023; 11:1329. [PMID: 37317303 PMCID: PMC10221470 DOI: 10.3390/microorganisms11051329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Novel and sustainable approaches are required to curb the increasing threat of antimicrobial resistance (AMR). Within the last decades, antimicrobial peptides, especially bacteriocins, have received increased attention and are being explored as suitable alternatives to antibiotics. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a self-preservation method against competitors. Bacteriocins produced by Staphylococcus, also referred to as staphylococcins, have steadily shown great antimicrobial potential and are currently being considered promising candidates to mitigate the AMR menace. Moreover, several bacteriocin-producing Staphylococcus isolates of different species, especially coagulase-negative staphylococci (CoNS), have been described and are being targeted as a good alternative. This revision aims to help researchers in the search and characterization of staphylococcins, so we provide an up-to-date list of bacteriocin produced by Staphylococcus. Moreover, a universal nucleotide and amino acid-based phylogeny system of the well-characterized staphylococcins is proposed that could be of interest in the classification and search for these promising antimicrobials. Finally, we discuss the state of art of the staphylococcin applications and an overview of the emerging concerns.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
6
|
Abdullahi IN, Lozano C, Saidenberg ABS, Latorre-Fernández J, Zarazaga M, Torres C. Comparative review of the nasal carriage and genetic characteristics of Staphylococcus aureus in healthy livestock: Insight into zoonotic and anthroponotic clones. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105408. [PMID: 36773670 DOI: 10.1016/j.meegid.2023.105408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Given the central role of livestock in understanding the genomic epidemiology of S. aureus, the present study systematically reviewed and synthesized data on the nasal S. aureus carriage, resistance patterns to critical antimicrobial agents, virulence factors and genetic lineages among healthy livestock. Bibliographical databases were searched for published studies from May 2003 to May 2022 on nasal S. aureus carriage, their phenotypic and genetic characteristics among healthy pigs (A), sheep and goats (B), cattle (C), poultry (D), camels (E) and buffaloes (F). Special focus was given to the prevalence of nasal MRSA, MRSA-CC398, MRSA-CC9, mecC-MRSA, MSSA-CC398, and resistance to linezolid (LZDR), chloramphenicol (CLOR) and tetracycline (TETR) in S. aureus isolates. Of the 5492 studies identified, 146 comprised groups A(83)/B(18)/C(33)/D(4)/E(5)/F(3), and were found eligible. The overall pooled nasal prevalence of MRSA in healthy livestock was 13.8% (95% CI: 13.5-14.1) among a pooled 48,154 livestock population. Specifically, the pooled prevalence in groups A to F were: 16.0% (95% CI: 15.6-16.4), 3.7% (95% CI: 2.9-4.6), 13.6% (95% CI: 12.8-14.4), 5.8% (95% CI: 5.1-6.5), 7.1% (95% CI: 6.1-10.7), and 2.8% (95% CI: 1.5-4.8), respectively. These values varied considerably by continent. Varied pooled prevalences of CC398 lineage with respect to MRSA isolates were obtained, with the highest from pigs and cattle (>70%). Moreover, other classical animal-adapted MRSA as well as MSSA-CC398-t1928 were reported. TETR-MSSA was lowest in cattle (18.9%) and highest in pigs (80.7%). LZDR-S. aureus was reported in 8 studies (mediated by optrA and cfr), mainly in pigs (n = 4), while CLOR-S. aureus was reported in 32 studies. The virulence genes luk-S/F-PV, tst, etd, sea, see were sparsely reported, and only in non-CC398-MRSA lineages. Certain S. aureus clones and critical AMR appeared to have predominance in some livestock, as in the case of pigs that are high nasal carriers of MRSA-CC398 and -CC9, and MSSA-CC398. These findings highlight the need for adequate prevention against the transmission of zoonotic S. aureus lineages to humans.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Andre Becker Simoes Saidenberg
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; Section for Food Safety and Zoonoses, Institute for Veterinary and Companion Animal Science, Københavns Universitet, Copenhagen, Denmark
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
7
|
Belhout C, Boyen F, Vereecke N, Theuns S, Taibi N, Stegger M, de la Fé-Rodríguez PY, Bouayad L, Elgroud R, Butaye P. Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococci (MRS) and Mammaliicocci (MRM) in Dromedary Camels from Algeria: First Detection of SCC mec- mecC Hybrid in Methicillin-Resistant Mammaliicoccus lentus. Antibiotics (Basel) 2023; 12:674. [PMID: 37107036 PMCID: PMC10134997 DOI: 10.3390/antibiotics12040674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Dromedary camels are an important source of food and income in many countries. However, it has been largely overlooked that they can also transmit antibiotic-resistant bacteria. The aim of this study was to identify the Staphylococcaceae bacteria composition of the nasal flora in dromedary camels and evaluate the presence of methicillin-resistant Mammaliicoccus (MRM) and methicillin-resistant Staphylococcus (MRS) in dromedary camels in Algeria. Nasal swabs were collected from 46 camels from seven farms located in two different regions of Algeria (M'sila and Ouargla). We used non-selective media to determine the nasal flora, and antibiotic-supplemented media to isolate MRS and MRM. The staphylococcal isolates were identified using an Autoflex Biotyper Mass Spectrometer (MALDI-TOF MS). The mecA and mecC genes were detected by PCR. Methicillin-resistant strains were further analysed by long-read whole genome sequencing (WGS). Thirteen known Staphylococcus and Mammaliicoccus species were identified in the nasal flora, of which half (49.2%) were coagulase-positive staphylococci. The results showed that four out of seven farms were positive for MRS and/or MRM, with a total of 16 isolates from 13 dromedary camels. The predominant species were M. lentus, S. epidermidis, and S. aureus. Three methicillin-resistant S. aureus (MRSA) were found to be ST6 and spa type t304. Among methicillin-resistant S. epidermidis (MRSE), ST61 was the predominant ST identified. Phylogenetic analysis showed clonal relatedness among M. lentus strains, while S. epidermidis strains were not closely related. Resistance genes were detected, including mecA, mecC, ermB, tet(K), and blaZ. An SCCmec type VIII element was found in a methicillin-resistant S. hominis (MRSH) belonging to the ST1 strain. An SCCmec-mecC hybrid element was detected in M. lentus, similar to what was previously detected in M. sciuri. This study highlights that dromedary camels may be a reservoir for MRS and MRM, and that they contain a specific set of SCCmec elements. This emphasizes the need for further research in this ecological niche from a One Health perspective.
Collapse
Affiliation(s)
- Chahrazed Belhout
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nick Vereecke
- PathoSense, Pastoriestraat 10, 2500 Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sebastiaan Theuns
- PathoSense, Pastoriestraat 10, 2500 Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nadia Taibi
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Bou-Ismail, Tipaza 42415, Algeria
| | - Marc Stegger
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Pedro Yoelvys de la Fé-Rodríguez
- Departamento de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Carretera a Camajuaní km 5½, Santa Clara 54 830, Cuba
| | - Leila Bouayad
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
| | - Rachid Elgroud
- Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine 25017, Algeria
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
8
|
Genomic Evidence for Direct Transmission of mecC-MRSA between a Horse and Its Veterinarian. Antibiotics (Basel) 2023; 12:antibiotics12020408. [PMID: 36830318 PMCID: PMC9952710 DOI: 10.3390/antibiotics12020408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus bearing the mecC gene (mecC-MRSA) has been reported from animals and humans in recent years. This study describes the first mecC-MRSA isolates of human and equine origin in Hungary (two isolates from horses and one from a veterinarian, who treated one of the infected horses, but was asymptomatic). MRSA isolates were identified by cultivation and PCR detection of the species-specific spa gene and mecA/mecC methicillin resistance genes. The isolates were characterized by antibiotic susceptibility testing, MLST, spa, SCCmec typing, PFGE and whole genome sequencing (WGS). All three isolates belonged to the ST130-t843-SCCmec XI genotype, and carried the mecC and blaZ genes. Apart from beta-lactam drugs, they were sensitive to all tested antibiotics. The isolates of the infected horse and its veterinarian had the same PFGE pulsotype and showed only slight differences with WGS. Hence, this is the first description of direct transmission of a mecC-carrying MRSA between a horse and its veterinarian. The emergence of mecC in the country highlights the importance of the appropriate diagnostics in MRSA identification.
Collapse
|
9
|
Clonal dissemination of successful emerging clone mecA-MRSA t304/ST6 among humans and hedgehogs in the Helsinki metropolitan area in Finland. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
10
|
Silva V, Caniça M, Manageiro V, Verbisck N, Tejedor-Junco MT, González-Martin M, Corbera JA, Poeta P, Igrejas G. Staphylococcus aureus and Methicillin-Resistant Coagulase-Negative Staphylococci in Nostrils and Buccal Mucosa of Healthy Camels Used for Recreational Purposes. Animals (Basel) 2022; 12:ani12101255. [PMID: 35625101 PMCID: PMC9138023 DOI: 10.3390/ani12101255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
Several different species of animals host staphylococci as normal microbiota. These animals can be a source of staphylococci zoonotic infections. People with routine or occupational exposure to infected/colonized animals are at risk of a potential transmission. Therefore, we aimed to investigate the presence of S. aureus and other staphylococci in camels used for recreational purposes as well as their antimicrobial resistance, virulence factors and genetic lineages. A total of 172 samples were collected from 86 healthy camels (nose and mouth) from different farms located in the Canary Islands, Spain. Antimicrobial susceptibility testing was performed against 14 antimicrobial agents. The presence of virulence genes was studied by PCR. Multilocus sequence typing, spa typing and agr typing were performed in all S. aureus isolates. From the 86 camels tested, 42 staphylococci were isolated, of which there were 11 S. aureus, 13 S. lentus, 12 S. sciuri, 3 S. xylosus, S. epidermidis, S. hominis and S. chromogenes. Staphylococci isolates were resistant to penicillin, ciprofloxacin, clindamycin and fusidic acid. All S. aureus isolates harbored the hla, hlb and hld virulence genes. S. aureus isolates were ascribed to three sequence types (STs) and three spa types. All S. aureus isolates belonged to agr type III. Camels from Gran Canaria used in recreational purposes have a moderate prevalence of S. aureus and other coagulase-negative staphylococci. Nevertheless, S. aureus isolates are susceptible to almost all antibiotics tested.
Collapse
Affiliation(s)
- Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal; (M.C.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | | | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (M.T.T.-J.); (M.G.-M.)
| | - Margarita González-Martin
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (M.T.T.-J.); (M.G.-M.)
| | - Juan Alberto Corbera
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain; (M.T.T.-J.); (M.G.-M.)
- Correspondence: (J.A.C.); (P.P.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
- CECAV—Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Correspondence: (J.A.C.); (P.P.)
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 1099-085 Lisboa, Portugal
| |
Collapse
|