1
|
Gao Z, Zhang Q, Gao S, Dzakpasu M, Wang XC. Optimizing roof-harvested rainwater storage: Impact of dissolved oxygen regime on self-purification and quality dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176574. [PMID: 39368504 DOI: 10.1016/j.scitotenv.2024.176574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Roof-harvested rainwater presents a promising, unconventional, and sustainable water resource for both potable and non-potable uses. However, there is a significant gap in understanding the quality evolution of stored rainwater under varying dissolved oxygen conditions and its suitability for various applications. This study investigated the evolution of rainwater quality under three distinct storage conditions: aerated, open, and sealed. Additionally, the microbial community and metabolic functions were analyzed to systematically evaluate the self-purification performance over long-term storage durations. The results indicate that aerated storage enhances microbial carbon metabolism, leading to a degradation rate of 54.4 %. Sealed and open storage conditions exhibited primary organic matter degradation during the early and late stages, respectively. Roof-rainwater harvesting (RRWH) systems showed limited denitrification activity across all three dissolved oxygen conditions. The maximum accumulation of NO3-N during the storage period reached 5.23 mg/L. In contrast, sealed storage demonstrated robust self-purification performance, evidenced by a comprehensive coefficient of 15.83 calculated by Streeter-Phelps model. These findings provide valuable insights into the mechanisms governing rainwater quality changes under various storage conditions, emphasizing the necessity for developing effective management strategies for the storage and utilization of roof-harvested rainwater.
Collapse
Affiliation(s)
- Zan Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Shiyi Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
2
|
Gamlin J, Caird R, Sachdeva N, Miao Y, Walecka-Hutchison C, Mahendra S, K De Long S. Developing a microbial community structure index (MCSI) as an approach to evaluate and optimize bioremediation performance. Biodegradation 2024; 35:993-1006. [PMID: 39017970 DOI: 10.1007/s10532-024-10093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Much attention is placed on organohalide-respiring bacteria (OHRB), such as Dehalococcoides, during the design and performance monitoring of chlorinated solvent bioremediation systems. However, many OHRB cannot function effectively without the support of a diverse group of other microbial community members (MCMs), who play key roles fermenting organic matter into more readily useable electron donors, producing corrinoids such as vitamin B12, or facilitating other important metabolic processes or biochemical reactions. While it is known that certain MCMs support dechlorination, a metric considering their contribution to bioremediation performance has yet to be proposed. Advances in molecular biology tools offer an opportunity to better understand the presence and activity of specific microbes, and their relation to bioremediation performance. In this paper, we test the hypothesis that a specific microbial consortium identified within 16S ribosomal ribonucleic acid (rRNA) gene next generation sequencing (NGS) data can be predictive of contaminant degradation rates. Field-based data from multiple contaminated sites indicate that increasing relative abundance of specific MCMs correlates with increasing first-order degradation rates. Based on these results, we present a framework for computing a simplified metric using NGS data, the Microbial Community Structure Index, to evaluate the adequacy of the microbial ecosystem during assessment of bioremediation performance.
Collapse
Affiliation(s)
- Jeff Gamlin
- GSI Environmental Inc, 13949 West Colfax Ave, Suite 210, Lakewood, CO, 80401, USA.
| | - Renee Caird
- Jacobs, 120 St. James Ave, Boston, MA, 02116, USA
| | - Neha Sachdeva
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| |
Collapse
|
3
|
Freeman HA, Hepburn LJ, Taylor MI, Hunter E, Dumbrell AJ, Gregson BH, Smith AJ, Lamphierre A, Cameron TC. What makes a habitat a home? Habitat associations of juvenile European sea bass, Dicentrarchus labrax, in estuarine nurseries. JOURNAL OF FISH BIOLOGY 2024; 105:539-556. [PMID: 38831672 DOI: 10.1111/jfb.15791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024]
Abstract
Selection of nursery habitats by marine fish, such as European sea bass (Dicentrarchus labrax), is poorly understood. Identifying and protecting the full range of juvenile nursery habitats is vital to supporting resilient fish populations and economically important fisheries. We examined how the condition, stomach fullness, and diet of juvenile European sea bass, along with their abundance, differ at high or low tide between the following estuarine habitats: saltmarsh, oyster reefs, shingle, sand, and mud edge habitats. Using a combination of fyke and seine netting we found no difference in sea bass abundance or condition across high-tide habitats, suggesting that rather than differentially selecting between them, juvenile sea bass use all available shallow habitats at high tide. Stomach fullness was significantly higher on saltmarsh and sand compared to mud, and thus these habitats may support better foraging. Dietary DNA metabarcoding revealed that sand and saltmarsh diets mostly comprised Hediste polychaetes, whereas zooplanktonic taxa dominated diets over mud. At low tide, sea bass abundance was highest in shingle and oyster reefs, where stomach fullness and condition were lowest. This may indicate a potential trade-off between using habitats for foraging and refuge. Although sea bass abundance alone does not capture productivity, the high abundance across all estuarine habitats at high tide suggests that it is important to consider the protection of a mosaic of interconnected habitats to support nursery functions rather than focus on individual habitat types.
Collapse
Affiliation(s)
| | | | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ewan Hunter
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, UK
| | - Benjamin H Gregson
- School of Life Sciences, University of Essex, Colchester, UK
- School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Albert J Smith
- School of Life Sciences, University of Essex, Colchester, UK
| | | | - Tom C Cameron
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
4
|
Modra H, Ulmann V, Gersl M, Babak V, Konecny O, Hubelova D, Caha J, Kudelka J, Falkinham JO, Pavlik I. River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria. MICROBIAL ECOLOGY 2023; 87:15. [PMID: 38102317 PMCID: PMC10724323 DOI: 10.1007/s00248-023-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.
Collapse
Affiliation(s)
- Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00, Ostrava, Czech Republic
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Ondrej Konecny
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Caha
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Kudelka
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | | | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
5
|
Septic arthritis in a nonprosthetic joint due to Mycobacterium fortuitum: a case report. CURRENT ORTHOPAEDIC PRACTICE 2022. [DOI: 10.1097/bco.0000000000001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|