1
|
Heckman RW, Pereira CG, Aspinwall MJ, Juenger TE. Physiological Responses of C 4 Perennial Bioenergy Grasses to Climate Change: Causes, Consequences, and Constraints. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:737-769. [PMID: 38424068 DOI: 10.1146/annurev-arplant-070623-093952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
C4 perennial bioenergy grasses are an economically and ecologically important group whose responses to climate change will be important to the future bioeconomy. These grasses are highly productive and frequently possess large geographic ranges and broad environmental tolerances, which may contribute to the evolution of ecotypes that differ in physiological acclimation capacity and the evolution of distinct functional strategies. C4 perennial bioenergy grasses are predicted to thrive under climate change-C4 photosynthesis likely evolved to enhance photosynthetic efficiency under stressful conditions of low [CO2], high temperature, and drought-although few studies have examined how these species will respond to combined stresses or to extremes of temperature and precipitation. Important targets for C4 perennial bioenergy production in a changing world, such as sustainability and resilience, can benefit from combining knowledge of C4 physiology with recent advances in crop improvement, especially genomic selection.
Collapse
Affiliation(s)
- Robert W Heckman
- Rocky Mountain Research Station, US Department of Agriculture Forest Service, Cedar City, Utah, USA;
| | - Caio Guilherme Pereira
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
2
|
Habermann E, Dias de Oliveira EA, Bianconi ME, Contin DR, Lemos MTO, Costa JVCP, Oliveira KS, Riul BN, Bonifácio-Anacleto F, Viciedo DO, Approbato AU, Alzate-Marin AL, Prado RDM, Costa KADP, Martinez CA. Balancing trade-offs: Enhanced carbon assimilation and productivity with reduced nutritional value in a well-watered C 4 pasture under a warmer CO 2-enriched atmosphere. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108408. [PMID: 38367386 DOI: 10.1016/j.plaphy.2024.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The concentration of atmospheric CO2 and temperature are pivotal components of ecosystem productivity, carbon balance, and food security. In this study, we investigated the impacts of a warmer climate (+2 °C above ambient temperature) and an atmosphere enriched with CO2 (600 ppm) on gas exchange, antioxidant enzymatic system, growth, nutritive value, and digestibility of a well-watered, managed pasture of Megathyrsus maximus, a tropical C4 forage grass, under field conditions. Elevated [CO2] (eC) improved photosynthesis and reduced stomatal conductance, resulting in increased water use efficiency and plant C content. Under eC, stem biomass production increased without a corresponding increase in leaf biomass, leading to a smaller leaf/stem ratio. Additionally, eC had negative impacts on forage nutritive value and digestibility. Elevated temperature (eT) increased photosynthetic gains, as well as stem and leaf biomass production. However, it reduced P and K concentration, forage nutritive value, and digestibility. Under the combined conditions of eC and eT (eCeT), eT completely offset the effects of eC on the leaf/stem ratio. However, eT intensified the effects of eC on photosynthesis, leaf C concentration, biomass accumulation, and nutritive value. This resulted in a forage with 12% more acid detergent fiber content and 28% more lignin. Additionally, there was a decrease of 19% in crude protein leading to a 15% decrease in forage digestibility. These changes could potentially affect animal feeding efficiency and feedback climate change, as ruminants may experience an amplification in methane emissions. Our results highlight the critical significance of conducting multifactorial field studies when evaluating plant responses to climate change variables.
Collapse
Affiliation(s)
- Eduardo Habermann
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Eduardo Augusto Dias de Oliveira
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Matheus Enrique Bianconi
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniele Ribeiro Contin
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences (FCFRP), University of São Paulo, Av. Bandeirantes 3900, 14040-903, Ribeirão Preto, SP, Brazil
| | - Maria Teresa Oliverio Lemos
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | | | - Kamilla Silva Oliveira
- Department of Agricultural Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Road Prof. Paulo Donato Castellane No number, 14884-900, Jaboticabal, SP, Brazil
| | - Beatriz Neroni Riul
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Fernando Bonifácio-Anacleto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Dilier Olivera Viciedo
- Institute of Agrifood, Animals and Environmental Sciences, Universidad de O'Higgins, San Fernando, Chile
| | - Andressa Uehara Approbato
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Ana Lilia Alzate-Marin
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Renato de Mello Prado
- Department of Agricultural Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Access Road Prof. Paulo Donato Castellane No number, 14884-900, Jaboticabal, SP, Brazil
| | | | - Carlos Alberto Martinez
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
3
|
Lv G, Jin J, He M, Wang C. Soil Moisture Content Dominates the Photosynthesis of C 3 and C 4 Plants in a Desert Steppe after Long-Term Warming and Increasing Precipitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2903. [PMID: 37631115 PMCID: PMC10459209 DOI: 10.3390/plants12162903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Plant photosynthesis has a non-negligible influence on forage quality and ecosystem carbon sequestration. However, the influence of long-term warming, increasing precipitation, and their interactions on the photosynthesis of dominant species in desert steppe remains unclear, and the main factors regulating plant photosynthesis in desert steppes have remained unrevealed. Therefore, we measured the photosynthetic parameters and specific leaf area of the dominant species and calculated the water and nitrogen content of leaves and soil in a desert steppe after long-term warming and increasing precipitation (air temperature, W0, air temperature increases of 2 °C and 4 °C, W1 and W2; natural precipitation, P0, natural precipitation increases of 25% and 50%, P1 and P2). Results showed that warming and increasing precipitation significantly enhanced photosynthesis in C3 and C4 species (p < 0.05). Compared to W0P0, the net photosynthetic rate of C3 and C4 species in W2P2 increased by 159.46% and 178.88%, respectively. Redundancy analysis showed that soil water content significantly explained the photosynthesis of C3 and C4 plants (the degree of explanation was 48% and 67.7%), followed by soil-available nitrogen content (the degree of explanation was 19.6% and 5.3%). Therefore, our study found that climate change enhanced photosynthesis in C3 and C4 plants, and soil water content plays a critical role in regulating photosynthesis in desert steppes.
Collapse
Affiliation(s)
- Guangyi Lv
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.L.); (M.H.)
| | - Jing Jin
- Mengcao Ecological Environment (Group) Co., Ltd., Inner Mongolia Autonomous Region, Hohhot 010000, China;
| | - Mengting He
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.L.); (M.H.)
| | - Chengjie Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010018, China; (G.L.); (M.H.)
| |
Collapse
|
4
|
Approbato AU, Contin DR, Dias de Oliveira EA, Habermann E, Cela J, Pintó-Marijuan M, Munné-Bosch S, Martinez CA. Adjustments in photosynthetic pigments, PS II photochemistry and photoprotection in a tropical C4 forage plant exposed to warming and elevated [CO 2]. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:345-360. [PMID: 36463636 DOI: 10.1016/j.plaphy.2022.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Global climate change will impact crops and grasslands, affecting growth and yield. However, is not clear how the combination of warming and increased atmospheric carbon dioxide concentrations ([CO2]) will affect the photosystem II (PSII) photochemistry and the photosynthetic tissue photoinhibition and photoprotection on tropical forages. Here, we evaluated the effects of elevated [CO2] (∼600 μmol mol-1) and warming (+2 °C increase temperature) on the photochemistry of photosystem II and the photoprotection strategies of a tropical C4 forage Panicum maximum Jacq. grown in a Trop-T-FACE facility under well-watered conditions without nutrient limitation. Analysis of the maximum photochemical efficiency of PSII (Fv/Fm), the effective PSII quantum yield Y(II), the quantum yield of regulated energy dissipation Y(NPQ), the quantum yield of non-regulated energy dissipation Y(NO), and the malondialdehyde (MDA) contents in leaves revealed that the photosynthetic apparatus of plants did not suffer photoinhibitory damage, and plants did not increase lipid peroxidation in response to warming and [CO2] enrichment. Plants under warming treatment showed a 12% higher chlorophyll contents and a 58% decrease in α-tocopherol contents. In contrast, carotenoid composition (zeaxanthin and β-carotene) and ascorbate levels were not altered by elevated [CO2] and warming. The elevated temperature increased both net photosynthesis rate and aboveground biomass but elevated [CO2] increased only net photosynthesis. Adjustments in chlorophyll, de-epoxidation state of the xanthophylls cycle, and tocopherol contents suggest leaves of P. maximum can acclimate to 2 °C warmer temperature and elevated [CO2] when plants are grown with enough water and nutrients during tropical autumn-winter season.
Collapse
Affiliation(s)
- Andressa Uehara Approbato
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniele Ribeiro Contin
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | | | - Eduardo Habermann
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Jana Cela
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Marta Pintó-Marijuan
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Carlos Alberto Martinez
- Department of Biology, FFCLRP, University of Sao Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Habermann E, Dias de Oliveira EA, Contin DR, Costa JVCP, Costa KADP, Martinez CA. Warming offsets the benefits of elevated CO 2 in water relations while amplifies elevated CO 2-induced reduction in forage nutritional value in the C 4 grass Megathyrsus maximus. FRONTIERS IN PLANT SCIENCE 2022; 13:1033953. [PMID: 36544868 PMCID: PMC9760913 DOI: 10.3389/fpls.2022.1033953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Tropical grasslands are very important to global carbon and water cycles. C4 plants have increased heat tolerance and a CO2 concentrating mechanism that often reduces responses to elevated concentrations of CO2 ([CO2]). Despite the importance of tropical grasslands, there is a scarcity of studies that elucidate how managed tropical grasslands will be affected by elevated [CO2] and warming. In our study, we used a combination of a temperature-free air-controlled enhancement (T-FACE) and a free-air carbon dioxide enrichment (FACE) systems to increase canopy temperature and [CO2] under field conditions, respectively. We warmed a field-grown pasture dominated by the C4 tropical forage grass Megathyrsus maximus by 2°C above ambient under two levels of [CO2] (ambient (aC) and elevated (eC - 600 ppm) to investigate how these two factors isolated or combined regulate water relations through stomatal regulation, and how this combination affects PSII functioning, biochemistry, forage nutritive value, and digestibility. We demonstrated that the effects of warming negated the effects of eC in plant transpiration, water potential, proline content, and soil moisture conservation, resulting in warming canceling the eCO2-induced improvement in these parameters. Furthermore, there were additive effects between eC and warming for chlorophyll fluorescence parameters and aboveground nutritive value. Warming sharply intensified the eCO2-induced decrease in crude protein content and increases in forage fibrous fraction and lignin, resulting in a smaller forage digestibility under a warmer CO2-enriched atmosphere. Our results highlight the importance of multifactorial studies when investigating global change impacts on managed ecosystems and the potential consequences for the global carbon cycle like amplification in methane emissions by ruminants and feeding a positive climate feedback system.
Collapse
Affiliation(s)
- Eduardo Habermann
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Augusto Dias de Oliveira
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Daniele Ribeiro Contin
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences (FCFRP), University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Carlos Alberto Martinez
- Department of Biology, Ribeirão Preto School of Philosophy, Science and Literature (FFCLRP), University of Sao Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|