1
|
Xu X, Shao Z, Johnson MD, Zhang L, Yang Z. Coming to the dark side: How does nitrogen eutrophication reshape the mixotrophic trade-off of osmo-mixotrophy in Ochromonas? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177803. [PMID: 39616924 DOI: 10.1016/j.scitotenv.2024.177803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Increasing nitrogen level is one of the most serious environmental problems in global natural waters, disturbing the stability of function and structure of aquatic ecosystem. As important functional group, mixotrophs with plastic metabolism modes perform high adaptations under changing environments, potentially with positive biogeochemical consequences. Here we focus on the trophic plasticity of a model eukaryotic microorganism, mixotrophic Ochromonas under increasing nitrogen and tested the role of osmo-mixotrophy (= mixotrophy) on the physiology of Ochromonas. Results showed that nitrogen eutrophication significantly reduced the proportion of open PSII reaction centers of mixotrophic Ochromonas, and osmo-mixotrophic Ochromonas enhanced the relative contribution of organic carbon uptake with increasing nitrogen. Furthermore, genes involved in photosynthetic electron transfer and photosynthetic carbon fixation were down-regulated, and genes involved in energy metabolism were upregulated. These findings suggested that increasing nitrogen caused mixotrophic organisms to become more heterotrophic, which may bring unexpected impacts to the balance of photosynthesis and respiration within aquatic ecosystem.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Zhihao Shao
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Matthew D Johnson
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA..
| | - Lu Zhang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - Zhou Yang
- Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Li W, Liu N, Li J, Wang B, Shi X, Liang X, Yang M, Xu S, Liu CQ. Chemodiversity of Dissolved Organic Matter Is Governed by Microbial Biogeography in Inland Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7753-7763. [PMID: 37163365 DOI: 10.1021/acs.est.3c00896] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Dissolved organic matter (DOM) is crucial for the carbon biogeochemical cycle and has a close link with microbiome in aquatic ecosystems; however, the causal relationship between DOM and microbial diversity in inland waters is not very clear so far. Therefore, a national survey of China's inland waters was conducted, and the DOM chemical composition and microbial community composition were determined by Fourier transform ion cyclotron resonance mass spectrometry and high-throughput sequencing to clarify the abovementioned question. Here, we found that DOM chemodiversity was governed by microbial community assembly in inland waters, not vice versa. Under the control of microbial biogeography, DOM chemodiversity showed a clear geographical distribution difference. Water DOM chemodiversity was mainly constrained by bacterial and archaeal community composition, whereas sediment DOM chemodiversity was mainly controlled by eukaryotic and fungal community composition. In addition, the sediment DOM chemical composition was also affected by the interaction of different microbial groups between waters and sediments. The study is the first to clarify the causal relationship and proposes a microbial regulatory mechanism on the geographical distribution pattern of DOM chemodiversity, thus further deepening the understanding of the DOM biogeochemical cycle.
Collapse
Affiliation(s)
- Wanzhu Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianfeng Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Baoli Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| | - Xinjie Shi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Meiling Yang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sheng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin 300072, China
| |
Collapse
|
3
|
Feng M, Cheng H, Zhang P, Wang K, Wang T, Zhang H, Wang H, Zhou L, Xu J, Zhang M. Stoichiometric stability of aquatic organisms increases with trophic level under warming and eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160106. [PMID: 36370785 DOI: 10.1016/j.scitotenv.2022.160106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The balance of stoichiometric traits of organisms is crucial for nutrient cycling and energy flow in ecosystems. However, the impacts of different drivers on stoichiometric (carbon, C; nitrogen, N; and phosphorus, P) variations of organisms have not been well addressed. In order to understand how stoichiometric traits vary across trophic levels under different environmental stressors, we performed a mesocosm experiment to explore the impacts of warming (including +3 °C consistent warming above ambient and heat waves ranging from 0 to 6 °C), eutrophication, herbicide and their interactions on stoichiometric traits of organisms at different trophic levels, which was quantified by stable nitrogen isotopes. Results showed that herbicide treatment had no significant impacts on all stochiometric traits, while warming and eutrophication significantly affected the stoichiometric traits of organisms at lower trophic levels. Eutrophication increased nutrient contents and decreased C: nutrient ratios in primary producers, while the response of N:P ratios depended on the taxonomic group. The contribution of temperature treatments to stoichiometric variation was less than that of eutrophication. Heat waves counteracted the impacts of eutrophication, which was different from the effects of continuous warming, indicating that eutrophication impacts on organism stoichiometric traits depended on climate scenarios. Compared to environmental drivers, taxonomic group was the dominant driver that determined the variations of stoichiometric traits. Furthermore, the stoichiometric stability of organisms was strongly positively correlated with their trophic levels. Our results demonstrate that warming and eutrophication might substantially alter the stoichiometric traits of lower trophic levels, thus impairing the nutrient transfer to higher trophic level, which might further change the structure of food webs and functions of the ecosystems.
Collapse
Affiliation(s)
- Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kang Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China.
| |
Collapse
|
4
|
Li W, Wang B, Xiao J, Yang M, Xu S, Liu CQ. Phytoplankton cell size control can be affected by photosynthetic light energy utilization. Front Microbiol 2022; 13:1008606. [PMID: 36406451 PMCID: PMC9667819 DOI: 10.3389/fmicb.2022.1008606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022] Open
Abstract
Phytoplankton cell size is well known as an essential functional trait, but its control factors are still unclear. Considering light provides the necessary energy for phytoplankton survival, we hypothesized that photosynthetic light energy utilization could influence phytoplankton cell size control. Several scenarios were conducted to understand the relationship between Fv /Fm and cell size for phytoplankton interspecies, and metatranscriptome in the field and transcriptome in the laboratory were used to understand relevant molecular mechanisms. The results indicated that there was a universal significant positive relationship between Fv /Fm and cell volume in general. The molecular evidence demonstrated that light utilization by phytoplankton regulates their cell size by harmonizing the generation and allocation of chemical energy and fixed carbon in the cell. Phytoplankton cell size would cease to enlarge once the increased light energy conversion and subsequent fixed carbon could no longer satisfy the increasing demand of size enlargement. This unity of energy and matter in shaping phytoplankton size results in cell size being an important functional trait. This study is the first to discover the above molecular mechanisms and is helpful to deepen the understanding on the cell size control of phytoplankton.
Collapse
|