1
|
Meyer GA, Leroux SJ. A theory for context-dependent effects of mammalian trampling on ecosystem nitrogen cycling. J Anim Ecol 2024; 93:583-598. [PMID: 38566364 DOI: 10.1111/1365-2656.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Large mammalian herbivores substantially impact ecosystem functioning. As their populations are dramatically altered globally, disentangling their consumptive and non-consumptive effects is critical to advance mechanistic understanding and improve prediction of effects over ecosystem and Earth-system spatial extents. Mathematical models have played an important role in clarifying potential mechanisms of herbivore zoogeochemistry, based mostly on their consumptive effects as primary consumers and recyclers of organic and inorganic matter via defecation and urination. Trampling is a ubiquitous effect among walking vertebrates, but the consequences and potential mechanisms of trampling in diverse environments remain poorly understood. We derive a novel mathematical model of large mammalian herbivore effects on ecosystem nitrogen cycling, focusing on how trampling and environmental context impact soil processes. We model herbivore trampling with a linear positive or negative additive effect on soil-mediated nitrogen cycling processes. Combining analytical and numerical analyses, we find trampling by large mammalian herbivores is likely to decrease nitrogen mineralisation rate across diverse environments, such as temperate grassland and boreal forest. These effects are mediated by multiple potential mechanisms, including trampling-induced changes to detritivore biomass and functioning (e.g. rate of organic matter consumption). We also uncover scenarios where trampling can increase nitrogen mineralisation rate, contingent on the environment-specific relative sensitivity of detritivore mineral-nitrogen release and detritivore mortality, to trampling. In contrast to some consumptive mechanisms, our results suggest the pace of soil nitrogen cycling prior to trampling has little influence over the direction of the trampling net effect on nitrogen mineralisation, but that net effects may be greater in slow-cycling systems (e.g. boreal forests) than in fast-cycling systems (e.g. grasslands). Our model clarifies the potential consequences of previously overlooked mechanisms of zoogeochemistry that are common to all terrestrial biomes. Our results provide empirically testable predictions to guide future progress in empirical and theoretical studies of herbivore effects in diverse environmental contexts. Resolving ecological contingencies around animal consumptive and non-consumptive effects will improve whole-ecosystem management efforts such as restoration and rewilding.
Collapse
Affiliation(s)
- G Adam Meyer
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| |
Collapse
|
2
|
Yang Y, Yao F, Sun Y, Yang Z, Li R, Bai G, Lin W, Chen H. Appropriately Reduced Nitrogen and Increased Phosphorus in Ratooning Rice Increased the Yield and Reduced the Greenhouse Gas Emissions in Southeast China. PLANTS (BASEL, SWITZERLAND) 2024; 13:438. [PMID: 38337971 PMCID: PMC10857620 DOI: 10.3390/plants13030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Reducing greenhouse gas emissions while improving productivity is the core of sustainable agriculture development. In recent years, rice ratooning has developed rapidly in China and other Asian countries, becoming an effective measure to increase rice production and reduce greenhouse gas emissions in these regions. However, the lower yield of ratooning rice caused by the application of a single nitrogen fertilizer in the ratooning season has become one of the main reasons limiting the further development of rice ratooning. The combined application of nitrogen and phosphorus plays a crucial role in increasing crop yield and reducing greenhouse gas emissions. The effects of combined nitrogen and phosphorus application on ratooning rice remain unclear. Therefore, this paper aimed to investigate the effect of combined nitrogen and phosphorus application on ratooning rice. Two hybrid rice varieties, 'Luyou 1831' and 'Yongyou 1540', were used as experimental materials. A control treatment of nitrogen-only fertilization (187.50 kg·ha-1 N) was set, and six treatments were established by reducing nitrogen fertilizer by 10% (N1) and 20% (N2), and applying three levels of phosphorus fertilizer: N1P1 (168.75 kg·ha-1 N; 13.50 kg·ha-1 P), N1P2 (168.75 kg·ha-1 N; 27.00 kg·ha-1 P), N1P3 (168.75 kg·ha-1 N; 40.50 kg·ha-1 P), N2P1 (150.00 kg·ha-1 N; 13.50 kg·ha-1 P), N2P2 (150.00 kg·ha-1 N; 27.00 kg·ha-1 P), and N2P3 (150.00 kg·ha-1 N; 40.50 kg·ha-1 P). The effects of reduced nitrogen and increased phosphorus treatments in ratooning rice on the yield, the greenhouse gas emissions, and the community structure of rhizosphere soil microbes were examined. The results showed that the yield of ratooning rice in different treatments followed the sequence N1P2 > N1P1 > N1P3 > N2P3 > N2P2 > N2P1 > N. Specifically, under the N1P2 treatment, the average two-year yields of 'Luyou 1831' and 'Yongyou 1540' reached 8520.55 kg·ha-1 and 9184.90 kg·ha-1, respectively, representing increases of 74.30% and 25.79% compared to the N treatment. Different nitrogen and phosphorus application combinations also reduced methane emissions during the ratooning season. Appropriately combined nitrogen and phosphorus application reduced the relative contribution of stochastic processes in microbial community assembly, broadened the niche breadth of microbial communities, enhanced the abundance of functional genes related to methane-oxidizing bacteria and soil ammonia-oxidizing bacteria in the rhizosphere, and decreased the abundance of functional genes related to methanogenic and denitrifying bacteria, thereby reducing greenhouse gas emissions in the ratooning season. The carbon footprint of ratooning rice for 'Luyou 1831' and 'Yongyou 1540' decreased by 25.82% and 38.99%, respectively, under the N1P2 treatment compared to the N treatment. This study offered a new fertilization pattern for the green sustainable development of rice ratooning.
Collapse
Affiliation(s)
- Yuncheng Yang
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feifei Yao
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yangbo Sun
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhipeng Yang
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Li
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ge Bai
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenxiong Lin
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongfei Chen
- College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (F.Y.); (Y.S.); (Z.Y.); (R.L.); (G.B.); (W.L.)
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|