1
|
Luo YY, Yang YX, Zhou S, Meng LL, Bate B. Quantification and forecast of GHG emissions from municipal solid wastes by multi-expression programming method. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 187:225-234. [PMID: 39067199 DOI: 10.1016/j.wasman.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
The municipal solid waste (MSW) management is significantly contributing to global greenhouse gas (GHG) emissions. Analyzing the emission pattern of GHGs from MSW is essential for formulating appropriate carbon mitigation policies. Based on IPCC Models, GHG emissions from MSW were calculated in Chinese provinces from 2004 to 2021 by landfilling and incineration operations, separately. Landfilling and incineration generated approximately 1271 MtCO2-eq and 198 MtCO2-eq from 2004 to 2021, respectively. GHG emissions from landfilling increased from 2004 to 2020 and declined in 2021, while GHG emissions from incineration demonstrated an increasing trend with three distinct growth stages. A panel regression model was then employed to identify the key factors influencing GHG emissions. GDP and population are positively related to GHG emissions from landfills, while PCCE is negatively related to GHG emissions from landfills. GDP and PCCE have a positive impact on GHG emissions from incineration, while population showed no significant impact. Multi-expression programming was used to develop an explicit model, forecasting GHG emissions from MSW by 2030. From 2022 to 2024, GHG emissions from landfills will quickly decrease, while GHG emissions from incineration will rapidly increase. Subsequently, the GHG emission rate of incineration will slow down, and GHGs from landfilling will slowly decrease due to no MSW for landfill disposal. The methods and results provide insightful information for policy-makers and waste management sector.
Collapse
Affiliation(s)
- Yuan-Yuan Luo
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Yi-Xin Yang
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Sheng Zhou
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Long-Long Meng
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China
| | - Bate Bate
- Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Nanayakkara CJ, Senadheera V, Anuththara V, Rathnaweera P, Nishshanka P, Piyatissa P, Munasingha H, Dushyantha N, Kuruppu GN. The collateral effects of COVID-19 on marine pollution. MARINE POLLUTION BULLETIN 2024; 205:116595. [PMID: 38880035 DOI: 10.1016/j.marpolbul.2024.116595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
The COVID-19 pandemic has gained significant attention to the intersection of public health crises and environmental challenges, particularly in the context of marine pollution. This paper examines the various impacts of the pandemic on marine environments, focusing on the pollution attributed to single-use plastics (SUPs) and personal protective equipment (PPE). Drawing on a comprehensive analysis of literature and case studies, the paper highlights the detrimental effects of increased plastic waste on marine ecosystems, biodiversity, and human health. Statistical data and graphical representations reveal the scale of plastic pollution during the pandemic, emphasizing the urgent need for mitigation strategies. The study evaluates innovative monitoring techniques and future recommendations, emphasizing stakeholder collaboration in sustainable waste management. By broadening geographic examples and comparative analyses, it provides a global perspective on the pandemic's impact, highlighting the importance of international cooperation for safeguarding marine ecosystems.
Collapse
Affiliation(s)
- Chamila Jinendra Nanayakkara
- Department of Earth Resources Engineering, Faculty of Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka
| | - Venuri Senadheera
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passaara Road, Badulla 90000, Sri Lanka
| | - Veenavee Anuththara
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passaara Road, Badulla 90000, Sri Lanka
| | - Pinsara Rathnaweera
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passaara Road, Badulla 90000, Sri Lanka
| | - Primalsha Nishshanka
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passaara Road, Badulla 90000, Sri Lanka
| | - Piyumi Piyatissa
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passaara Road, Badulla 90000, Sri Lanka
| | - Harshani Munasingha
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passaara Road, Badulla 90000, Sri Lanka
| | - Nimila Dushyantha
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passaara Road, Badulla 90000, Sri Lanka.
| | - Gayithri Niluka Kuruppu
- Department of Industrial Management, Faculty of Business, University of Moratuwa, Moratuwa 10400, Sri Lanka
| |
Collapse
|
3
|
Zhuo Y, He J, Li W, Deng J, Lin Q. A review on takeaway packaging waste: Types, ecological impact, and disposal route. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122518. [PMID: 37678737 DOI: 10.1016/j.envpol.2023.122518] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Rapid economic growth and urbanization have led to significant changes in the world's consumption patterns. Accelerated urbanization, the spread of the mobile Internet, and the increasing pace of work globally have all contributed to the demand for the food takeaway industry. The rapid development of the takeaway industry inevitably brings convenience to life, and with it comes great environmental pressure from waste packaging materials. While maintaining the convenience of people's lives, further reducing the environmental pollution caused by takeaway packaging materials and promoting the recycling and reuse of takeaway packaging waste need to attract the attention and concern of the whole society. This review systematically and comprehensively introduces common takeaway food types and commonly used packaging materials, analyzes the impacts of discarded takeaway packaging materials on human health and the ecological environment, summarizes the formulation and implementation of relevant policies and regulations, proposes treatment methods and resourceful reuse pathways for discarded takeaway packaging, and also provides an outlook on the development of green takeaway packaging. Currently, only 20% of waste packaging materials are recycled worldwide, and there is still a need to develop more green takeaway packaging materials and continuously improve relevant policies and regulations to promote the sustainable development of the takeaway industry. The review is conducive to further optimizing the takeaway packaging management system, alleviating the environmental pollution problem, and providing feasible solutions and technical guidance for further optimizing takeaway food packaging materials and comprehensive utilization of resources.
Collapse
Affiliation(s)
- Yu Zhuo
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - JinTao He
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China.
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - QinLu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha, 410004, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
4
|
Mahmud TS, Ng KTW, Karimi N, Adusei KK, Pizzirani S. Evolution of COVID-19 municipal solid waste disposal behaviors using epidemiology-based periods defined by World Health Organization guidelines. SUSTAINABLE CITIES AND SOCIETY 2022; 87:104219. [PMID: 36187707 PMCID: PMC9515004 DOI: 10.1016/j.scs.2022.104219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/06/2023]
Abstract
This study aims to identify the effects of continued COVID-19 transmission on waste management trends in a Canadian capital city, using pandemic periods defined from epidemiology and the WHO guidelines. Trends are detected using both regression and Mann-Kendall tests. The proposed analytical method is jurisdictionally comparable and does not rely on administrative measures. A reduction of 190.30 tonnes/week in average residential waste collection is observed in the Group II period. COVID-19 virulence negatively correlated with residential waste generation. Data variability in average collection rates during the Group II period increased (SD=228.73 tonnes/week). A slightly lower COVID-19 induced Waste Disposal Variability (CWDW) of 0.63 was observed in the Group II period. Increasing residential waste collection trends during Group II are observed from both regression (b = +1.6) and the MK test (z = +5.0). Both trend analyses reveal a decreasing CWDV trend during the Group I period, indicating higher diversion activities. Decreasing CWDV trends are also observed during the Group II period, probably due to the implementation of new waste programs. The use of pandemic periods derived from epidemiology helps us to better understand the effect of COVID-19 on waste generation and disposal behaviors, allowing us to better compare results in regions with different socio-economic affluences.
Collapse
Affiliation(s)
- Tanvir S Mahmud
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Nima Karimi
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Kenneth K Adusei
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Stefania Pizzirani
- School of Land Use and Environmental Change, University of the Fraser Valley, British Columbia, Canada, V2S 7M8
| |
Collapse
|
5
|
Abstract
Efficient packaging waste management systems are essential considering recent revisions of the European legislation on packaging waste management that sets ambitious targets. European rules aim to deal with the increasing quantities of packaging waste, which cause environmental problems. Consequently, it is necessary to identify functional packaging waste management systems to achieve these targets effectively and efficiently. However, given the heterogeneity of the different packaging management systems, policymakers, scholars, and industry operators struggle to have a comparative view. The number of non-harmonized laws in force across countries, autonomous recycling targets, and constant updates are prominent problems that make it difficult to obtain comparable information for research, business, and policymaking. To fill this gap, our research question consists of assigning responsibilities for prevention, collection, recycling, and recovery and an overview of some models at a glance with respect to the general governance and functioning of the system. We base our research on a multiple-case design since more cases are examined using complementary data collection methods, analysis of the previous literature, reports, legislation, and business and institutional websites. Our results provide insights from the following cases: Germany, France, the United Kingdom, the Netherlands, Portugal, Denmark, Spain, and Italy. In addition, policy implications emerge as our insights help overcome barriers in the European market’s development caused by the different rules on packaging management and design serving policymakers that aim to harmonize the management of packaging waste. The paper also contains managerial implications for circular economy business models that can be used by managers who aim to design or upgrade their business models according to both recent legislative upgrades and packaging management systems.
Collapse
|