1
|
Thomson T, Ellis JI, Fusi M, Prinz N, Lundquist CJ, Bury SJ, Shankar U, Cary SC, Pilditch CA. Effects of catchment land use on temperate mangrove forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173579. [PMID: 38823713 DOI: 10.1016/j.scitotenv.2024.173579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/25/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Human land use changes are threatening the integrity and health of coastal ecosystems worldwide. Intensified land use for anthropogenic purposes increases sedimentation rates, pollutants, and nutrient concentrations into adjacent coastal areas, often with detrimental effects on marine life and ecosystem functioning. However, how these factors interact to influence ecosystem health in mangrove forests is poorly understood. This study investigates the effects of catchment human land use on mangrove forest architecture and sedimentary attributes at a landscape-scale. Thirty sites were selected along a gradient of human land use within a narrow latitudinal range, to minimise the effects of varying climatic conditions. Land use was quantified using spatial analysis tools with existing land use databases (LCDB5). Twenty-six forest architectural and sedimentary variables were collected from each site. The results revealed a significant effect of human land use on ten out of 26 environmental variables. Eutrophication, characterised by changes in redox potential, pH, and sediment nutrient concentrations, was strongly associated with increasing human land use. The δ15N values of sediments and leaves also indicated increased anthropogenic nitrogen input. Furthermore, the study identified a positive correlation between human land use and tree density, indicating that increased nutrient delivery from catchments contributes to enhanced mangrove growth. Propagule and seedling densities were also positively correlated with human land use, suggesting potential recruitment success mechanisms. This research underpins the complex interactions between human land use and mangrove ecosystems, revealing changes in carbon dynamics, potential alterations in ecosystem services, and a need for holistic management approaches that consider the interconnectedness of species and their environment. These findings provide essential insights for regional ecosystem models, coastal management, and restoration strategies to address the impacts of human pressures on temperate mangrove forests, even in estuaries that may be relatively healthy.
Collapse
Affiliation(s)
- Timothy Thomson
- University of Waikato, School of Science, Tauranga, New Zealand.
| | - Joanne I Ellis
- University of Waikato, School of Science, Tauranga, New Zealand
| | - Marco Fusi
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne 1NE 7RU, United Kingdom
| | - Natalie Prinz
- University of Waikato, School of Science, Tauranga, New Zealand
| | - Carolyn J Lundquist
- National Institute of Water and Atmospheric Research, Hamilton, New Zealand; School of Environment, University of Auckland, Auckland, New Zealand
| | - Sarah J Bury
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Ude Shankar
- National Institute of Water and Atmospheric Research, Christchurch, New Zealand
| | - S Craig Cary
- School of Science, University of Waikato, Hamilton, New Zealand
| | | |
Collapse
|
2
|
Liu T, Bao K, Chen M, Neupane B, Gao C, Zaccone C. Human activity has increasingly affected recent carbon accumulation in Zhanjiang mangrove wetland, South China. iScience 2024; 27:109038. [PMID: 38361628 PMCID: PMC10867414 DOI: 10.1016/j.isci.2024.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Mangrove wetlands are an important component of blue carbon (C) ecosystems, although the anthropogenic impact on organic C accumulation rate (OCAR) in mangrove wetlands is not yet clear. Three sediment cores were collected from Zhanjiang Gaoqiao Mangrove Reserve in Southern China, dated by 210Pb and 137Cs, and physico-chemical parameters measured. Results show that the OCARs in mangroves and grasslands have significantly increased by 4.4 and 1.3 times, respectively, since 1950, which is consistent with the transformation of organic C sources and the increase of sedimentation rate. This increment is due to increased soil erosion and nutrient enrichment caused by land use change and the discharge of fertilizer runoff and aquaculture wastewater. This study provides clear evidence for understanding the changes in organic C accumulation processes during the Anthropocene and is conducive to promoting the realization of C peak and neutrality targets.
Collapse
Affiliation(s)
- Ting Liu
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Kunshan Bao
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Minqi Chen
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Bigyan Neupane
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
3
|
Wang X, Jiang Q, Zhao Z, Han X, Liu J, Liu Q, Xue B, Yang H. Comparison of spatiotemporal burial and contamination of heavy metals in core sediments of two plateau lakes with contrasting environments: implication for anthropogenic-driven processes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1178. [PMID: 37690077 DOI: 10.1007/s10661-023-11764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Investigating the impacts of climatic factors and human activities on sedimentary records of heavy metal (HM) contamination in lakes is essential for decision-making in global environmental monitoring and assessment. Spatiotemporal distributions of grain size (GS) and HM (Al, Cr, Mn, Ni, Cu, Zn, As, and Pb) concentrations have been conducted in core sediments that are collected from two adjacent plateau fault-bound lakes in southwest China with contrasting environments, i.e., deep oligotrophic Lake Fuxian (FX) and shallow hypertrophic Lake Xingyun (XY). Results showed that the average value of d50 in FX (4.61 μm) was lower than that in XY (8.35 μm), but the average concentrations of HMs (except Cr and Mn) in XY were higher than those in FX. Heavy metal burial rates (HMBR) were mainly controlled by sediment accumulation rates (SARs) rather than HM concentrations. The correlation coefficients between GS and HM concentrations became strong as the increasing water depths were associated with a stable sedimentary environment. Time-integrated enrichment factors (EF) and source identification of HMs between FX and XY represented that Cr, Ni, and Cu originated from natural sources but Mn, Zn, As, and Pb from anthropogenic sources, respectively. Regardless of FX and XY, the transition times of HMs from natural to anthropogenic sources occurred in the mid-1960s. Comparison of qualification impacts of climatic factors and human-induced factors on increased anthropogenic HMBR by the partial least squares path modeling (PLS-PM) implied that socio-economic activities, such as population density (PD) and gross domestic product (GDP), provided higher contributors to increased anthropogenic HMBR in XY (0.23/0.71) than FX (0.11/0.18). The comparative results of this study provided new insights into environmental monitoring and management of HM contamination for adjacent lakes with contrasting environments.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Environmental Sciences, Nanjing Xiaozhuang University, Nanjing, 211171, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfeng Jiang
- School of Geographical Sciences, Nantong University, Nantong, 226019, China.
| | - Zihan Zhao
- School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ximou Han
- School of Environmental Sciences, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Jinliang Liu
- School of Environmental Sciences, Nanjing Xiaozhuang University, Nanjing, 211171, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qun Liu
- School of Environmental Sciences, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hao Yang
- School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
4
|
Biamont-Rojas IE, Cardoso-Silva S, Bitencourt MD, Dos Santos ACA, Moschini-Carlos V, Rosa AH, Pompêo M. Ecotoxicology and geostatistical techniques employed in subtropical reservoirs sediments after decades of copper sulfate application. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2415-2434. [PMID: 35986856 DOI: 10.1007/s10653-022-01362-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Spatial distribution linked to geostatistical techniques contributes to sum up information into an easier-to-comprehend knowledge. This study compares copper spatial distribution in surface sediments and subsequent categorization according to its toxicological potential in two reservoirs, Rio Grande (RG) and Itupararanga (ITU) (São Paulo-Brazil), where copper sulfate is applied and not applied, respectively. Sediments from 47 sites in RG and 52 sites in ITU were collected, and then, copper concentrations were interpolated using geostatistical techniques (kriging). The resulting sediment distributions were classified in categories based on sediment quality guides: threshold effect level and probable effect level; regional reference values (RRVs) and enrichment factor (EF). Copper presented a heterogenic distribution and higher concentrations in RG (2283.00 ± 1308.75 mg/kg) especially on the upstream downstream, associated with algicide application as well as the sediment grain size, contrary to ITU (21.81 ± 8.28 mg/kg) where a no-clear pattern of distribution was observed. Sediments in RG are predominantly categorized as "Very Bad", whereas sediments in ITU are mainly categorized as "Good", showing values higher than RRV. The classification is supported by the EF categorization, which in RG is primarily categorized as "Very High" contrasting to ITU classified as "Absent/Very Low". Copper total stock in superficial sediment estimated for RG is 4515.35 Ton of Cu and for ITU is 27.45 Ton of Cu.
Collapse
Affiliation(s)
- Ivan Edward Biamont-Rojas
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, 18087-180, Brazil.
| | - Sheila Cardoso-Silva
- Federal University of Acre-UFAC, Rodovia BR 364, Km 04, Rio Branco, AC, 69920-900, Brazil
- Oceanographic Institute, University of São Paulo (IO/USP), Praça Do Oceanográfico, 191, São Paulo, SP, 05508-120, Brazil
| | - Marisa Dantas Bitencourt
- Department of Ecology, University of São Paulo, Rua Do Matão, trav. 14, n° 321, Cidade Universitária, São Paulo, 05508-090, Brazil
| | | | - Viviane Moschini-Carlos
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, 18087-180, Brazil
| | - André Henrique Rosa
- Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, Sorocaba, 18087-180, Brazil
| | - Marcelo Pompêo
- Department of Ecology, University of São Paulo, Rua Do Matão, trav. 14, n° 321, Cidade Universitária, São Paulo, 05508-090, Brazil
| |
Collapse
|
5
|
Xiao T, Ran F, Li Z, Wang S, Nie X, Liu Y, Yang C, Tan M, Feng S. Sediment organic carbon dynamics response to land use change in diverse watershed anthropogenic activities. ENVIRONMENT INTERNATIONAL 2023; 172:107788. [PMID: 36738584 DOI: 10.1016/j.envint.2023.107788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Sediment organic carbon (SOC) is a precious archive that synthesizes anthropogenic processes that remove geochemical fluxes from watersheds. However, the scarcity of inspection about the dynamic mechanisms of anthropogenic activities on SOC limits understanding into how key human factors drive carbon dynamics. Here, four typical basins with similar natural but significantly diverse human contexts (high-moderate-low disturbance: XJ-ZS and YJ-LS) were selected to reconstruct sedimentation rates (SR) and SOC dynamics nearly a century based on 200-cm corers. A partial least squares path model (PLS-PM) was used to establish successive (70 years) and multiple anthropogenic data (population, agriculture, land use, etc.) quantification methods for SOC. Intensified anthropogenic disturbances shifted all SR from pre-stable to post-1960s fluctuating increases (total coefficient: high: 0.63 < low: 0.47 < medium: 0.45). Although land use change was co-critical driver of SOC variations, their trend and extent differed under the dams and other disturbances (SOC mutated in high-moderate but stable in low). For high basin, land use changes increased (0.12) but dams reduced (-0.10) the downstream SOC. Furthermore, SOC mutation corresponded to soil erosion due to urbanization in both periods A and B. For moderate, SOC was reversed with the increase in afforestation and cropland (-0.19) due to the forest excitation effect and deep ploughing, which corresponded to the drought in phase B and the anthropogenic ecological project in A. For low, the increase in SOC corresponded to the Great Leap Forward deforestation in period B and the reed sweep in A, which suggested the minor land change substantially affected (0.16) SOC in fragile environments. Overall, SOC dynamics revealed that anthropogenic activities affected terrestrial and aquatic ecosystems for near the centenary, especially land use. This is constructive for agroforestry management and reservoir construction, consistent with expectations like upstream carbon sequestration and downstream carbon stabilization.
Collapse
Affiliation(s)
- Tao Xiao
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Fengwei Ran
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science & Engineering, Hunan University, Changsha 410082, PR China.
| | - Shilan Wang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Xiaodong Nie
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China.
| | - Yaojun Liu
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Changrong Yang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Min Tan
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Sirui Feng
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
6
|
Liu GH, Liu DQ, Wang P, Chen QQ, Che JM, Wang JP, Li WJ, Zhou SG. Temperature drives the assembly of Bacillus community in mangrove ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157496. [PMID: 35870580 DOI: 10.1016/j.scitotenv.2022.157496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Mangroves are located at the interface of terrestrial and marine environments, and experience fluctuating conditions, creating a need to better explore the relative role of the bacterial community. Bacillus has been reported to be the dominant group in the mangrove ecosystem and plays a key role in maintaining the biodiversity and function of the mangrove ecosystem. However, studies on bacterial and Bacillus community across four seasons in the mangrove ecosystem are scarce. Here, we employed seasonal large-scale sediment samples collected from the mangrove ecosystem in southeastern China and utilized 16S rRNA gene amplicon sequencing to reveal bacterial and Bacillus community structure changes across seasons. Compared with the whole bacterial community, we found that Bacillus community was greatly affected by season (temperature) rather than site. The key factors, NO3-N and NH4-N showed opposite interaction with superabundant taxa Bacillus taxa (SAT) and three rare Bacillus taxa including high rare taxa (HRT), moderate rare taxa (MRT) and low rare taxa (LRT). Network analysis suggested the co-occurrence of Bacillus community and Bacillus-bacteria, and revealed SAT had closer relationship compared with rare Bacillus taxa. HRT might act crucial response during the temperature decreasing process across seasons. This study fills a gap in addressing the assembly of Bacillus community and their role in maintaining microbial diversity and function in mangrove ecosystem.
Collapse
Affiliation(s)
- Guo-Hong Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Ding-Qi Liu
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pandeng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Qian-Qian Chen
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jian-Mei Che
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Jie-Ping Wang
- Agricultural Bio-resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350003, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province 350002, PR China.
| |
Collapse
|