1
|
Wang J, Wen X, Fang Z, Gao P, Wu P, Li X, Zeng G. Impact of salinity and organic matter on the ammonia-oxidizing archaea and bacteria in treating hypersaline industrial wastewater: amoA gene abundance and ammonia removal contributions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24099-24112. [PMID: 38436843 DOI: 10.1007/s11356-024-32707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Studies published recently proposed that ammonia-oxidizing archaea (AOA) may be beneficial for hypersaline (salinity > 50 g NaCl L-1) industrial wastewater treatment. However, knowledge of AOA activity in hypersaline bioreactors is limited. This study investigated the effects of salinity, organic matter, and practical pickled mustard tuber wastewater (PMTW) on AOA and ammonia-oxidizing bacteria (AOB) in two sequencing batch biofilm reactors (SBBRs). Results showed that despite observed salinity inhibition (p < 0.05), both AOA and AOB contributed to high ammonia removal efficiency at a salinity of 70 g NaCl L-1 in the two SBBRs. The ammonia removal efficiency of SBBR2 did not significantly differ from that of SBBR1 in the absence of organic matter (p > 0.05). Batch tests and quantitative real-time PCR (qPCR) reveal that salinity and organic matter inhibition resulted in a sharp decline in specific ammonia oxidation rates and amoA gene copy numbers of AOA and AOB (p < 0.05). AOA demonstrated higher abundance and more active ammonia oxidation activity in hypersaline and high organic matter environments. Salinity was positively correlated with the potential ammonia oxidation contribution of AOA (p < 0.05), resulting in a potential transition from AOB dominance to AOA dominance in SBBR1 as salinity levels rose. Moreover, autochthonous AOA in PMTW promoted the abundance and ammonia oxidation activities of AOA in SBBR2, further elevating the nitrification removal efficiency after feeding the practical PMTW. AOA demonstrates greater tolerance to the challenging hypersaline environment, making it a valuable candidate for the treatment of practical industrial wastewater with high salinity and organic content.
Collapse
Affiliation(s)
- Jiale Wang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| | - Xin Wen
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Zhuoan Fang
- Chongqing International Investment Consultation Group Co., Ltd., Chongqing, 400000, People's Republic of China
| | - Pei Gao
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Pei Wu
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Xiang Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Guoming Zeng
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| |
Collapse
|
2
|
Li M, Luan Y, Qin Z, Lu D. Startup of a large height-diameter ratio bioreactor by alternate feeding: performance of partial nitrification and enrichment of ammonia-oxidizing bacteria (AOB). ENVIRONMENTAL TECHNOLOGY 2024; 45:2171-2179. [PMID: 36602056 DOI: 10.1080/09593330.2023.2165458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In order to solve the complicated control of dissolved oxygen (DO) for partial nitrification in bioreactors treating high NH 4 + - N wastewater, a large height-diameter ratio anammox pre-reactor system was developed. And in this reactor, NO 2 - - N accumulation rate can reach 85.76% by alternate feeding with high NH 4 + - N wastewater (150 mg NH 4 + - N / L ) and low NH 4 + - N wastewater (50 mg c) with low DO (0.19 mg/L-0.62 mg/L). Based on 16S rRNA identification technology, it was found that Nitrosomonas had a significant effect on NH 4 + - N oxidization in this study. And when the reactor treated higher concentration wastewater (250 mg NH 4 + - N / L ), the growth rate of Nitrosomonas was higher than that of Nitrospira (nitrite-oxidizing bacteria, NOB), which was conducive to improving the NO 2 - - N accumulation rate and realizing partial nitrification stably. It was also found that the material exchange frequency of the microbial flora during alternate feeding with different NH 4 + - N concentration wastewaters was higher than that during feeding with higher NH 4 + - N concentration wastewater (250 mg/L) by Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolism pathways analysis. This study can provide valuable insights and lay the foundation for building anammox pre-reactors.
Collapse
Affiliation(s)
- Ming Li
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
- College of Environmental Science and Engineering, Nankai University, Tianjin, People's Republic of China
| | - Yongqing Luan
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| | - Zhe Qin
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| | - Da Lu
- School of Eco-Environment, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
3
|
Wu J, Xu W, Xu Y, Su H, Hu X, Cao Y, Zhang J, Wen G. Impact of Organic Carbons Addition on the Enrichment Culture of Nitrifying Biofloc from Aquaculture Water: Process, Efficiency, and Microbial Community. Microorganisms 2024; 12:703. [PMID: 38674647 PMCID: PMC11052406 DOI: 10.3390/microorganisms12040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In this study, we developed a rapid and effective method for enriching the culture of nitrifying bioflocs (NBF) from aquacultural brackish water. The self-designed mixotrophic mediums with a single or mixed addition of sodium acetate, sodium citrate, and sucrose were used to investigate the enrichment process and nitrification efficiency of NBF in small-scale reactors. The results showed that NBF with an MLVSSs from 1170.4 mg L-1 to 2588.0 mg L-1 were successfully enriched in a period of less than 16 days. The citrate group performed the fastest enrichment time of 10 days, while the sucrose group had the highest biomass of 2588.0 ± 384.7 mg L-1. In situ testing showed that the highest nitrification efficiency was achieved in the citrate group, with an ammonia oxidation rate of 1.45 ± 0.34 mg N L-1 h-1, a net nitrification rate of 2.02 ± 0.20 mg N L-1 h-1, and a specific nitrification rate of 0.72 ± 0.14 mg N g-1 h-1. Metagenomic sequencing revealed that Nitrosomonas (0.0~1.0%) and Nitrobacter (10.1~26.5%) were dominant genera for AOB and NOB, respectively, both of which had the highest relative abundances in the citrate group. Linear regression analysis further demonstrated significantly positive linear relations between nitrification efficiencies and nitrifying bacterial genera and gene abundance in NBF. The results of this study provide an efficient enrichment culture method of NBF for the operation of biofloc technology aquaculture systems, which will further promote its wide application in modern intensive aquaculture.
Collapse
Affiliation(s)
- Jiaqi Wu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
| | - Wujie Xu
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yu Xu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
| | - Haochang Su
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiaojuan Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yucheng Cao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jianshe Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
| | - Guoliang Wen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China; (J.W.); (J.Z.)
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.X.); (H.S.); (X.H.); (Y.C.)
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| |
Collapse
|
4
|
Meng S, Liang X, Peng T, Liu Y, Wang H, Huang T, Gu JD, Hu Z. Ecological distribution and function of comammox Nitrospira in the environment. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12557-6. [PMID: 37195422 DOI: 10.1007/s00253-023-12557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Complete ammonia oxidizers (Comammox) are of great significance for studying nitrification and expanding the understanding of the nitrogen cycle. Moreover, Comammox bacteria are also crucial in natural and engineered environments due to their role in wastewater treatment and maintaining the flux of greenhouse gases to the atmosphere. However, only few studies are there regarding the Comammox bacteria and their role in ammonia and nitrite oxidation in the environment. This review mainly focuses on summarizing the genomes of Nitrospira in the NCBI database. Ecological distribution of Nitrospira was also reviewed and the influence of environmental parameters on genus Nitrospira in different environments has been summarized. Furthermore, the role of Nitrospira in carbon cycle, nitrogen cycle, and sulfur cycle were discussed, especially the comammox Nitrospira. In addition, the overviews of current research and development regarding comammox Nitrospira, were summarized along with the scope of future research. KEY POINTS: • Most of Comammox Nitrospira are widely distributed in both aquatic and terrestrial ecosystems, but it has been studied less frequently in the extreme environments. • Comammox Nitrospira can be involved in different nitrogen transformation process, but rarely involved in nitrogen fixation. • The stable isotope and transcriptome techniques are important methods to study the metabolic function of comammox Nitrospira.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Xueji Liang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
5
|
Muter O. Current Trends in Bioaugmentation Tools for Bioremediation: A Critical Review of Advances and Knowledge Gaps. Microorganisms 2023; 11:710. [PMID: 36985282 PMCID: PMC10056695 DOI: 10.3390/microorganisms11030710] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Bioaugmentation is widely used in soil bioremediation, wastewater treatment, and air biofiltration. The addition of microbial biomass to contaminated areas can considerably improve their biodegradation performance. Nevertheless, analyses of large data sets on the topic available in literature do not provide a comprehensive view of the mechanisms responsible for inoculum-assisted stimulation. On the one hand, there is no universal mechanism of bioaugmentation for a broad spectrum of environmental conditions, contaminants, and technology operation concepts. On the other hand, further analyses of bioaugmentation outcomes under laboratory conditions and in the field will strengthen the theoretical basis for a better prediction of bioremediation processes under certain conditions. This review focuses on the following aspects: (i) choosing the source of microorganisms and the isolation procedure; (ii) preparation of the inoculum, e.g., cultivation of single strains or consortia, adaptation; (iii) application of immobilised cells; (iv) application schemes for soil, water bodies, bioreactors, and hydroponics; and (v) microbial succession and biodiversity. Reviews of recent scientific papers dating mostly from 2022-2023, as well as our own long-term studies, are provided here.
Collapse
Affiliation(s)
- Olga Muter
- Faculty of Biology, University of Latvia, LV-1004 Riga, Latvia
| |
Collapse
|