1
|
Lee JY, Chia RW, Veerasingam S, Uddin S, Jeon WH, Moon HS, Cha J, Lee J. A comprehensive review of urban microplastic pollution sources, environment and human health impacts, and regulatory efforts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174297. [PMID: 38945237 DOI: 10.1016/j.scitotenv.2024.174297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Microplastic (MP) pollution in urban environments is a pervasive and complex problem with significant environmental and human health implications. Although studies have been conducted on MP pollution in urban environments, there are still research gaps in understanding the exact sources, regulation, and impact of urban MP on the environment and public health. Therefore, the goal of this study is to provide a comprehensive overview of the complex pathways, harmful effects, and regulatory efforts of urban MP pollution. It discusses the research challenges and suggests future directions for addressing MPs related to environmental issues in urban settings. In this study, original research papers published from 2010 to 2024 across ten database categories, including PubMed, Google Scholar, Scopus, and Web of Science, were selected and reviewed to improve our understanding of urban MP pollution. The analysis revealed multifaceted sources of MPs, including surface runoff, wastewater discharge, atmospheric deposition, and biological interactions, which contribute to the contamination of aquatic and terrestrial ecosystems. MPs pose a threat to marine and terrestrial life, freshwater organisms, soil health, plant communities, and human health through ingestion, inhalation, and dermal exposure. Current regulatory measures for MP pollution include improved waste management, upgraded wastewater treatment, stormwater management, product innovation, public awareness campaigns, and community engagement. Despite these regulatory measures, several challenges such as; the absence of standardized MPs testing methods, MPs enter into the environment through a multitude of sources and pathways, countries struggle in balancing trade interests with environmental concerns have hindered effective policy implementation and enforcement. Addressing MP pollution in urban environments is essential for preserving ecosystems, safeguarding public health, and advancing sustainable development. Interdisciplinary collaboration, innovative research, stringent regulations, and public participation are vital for mitigating this critical issue and ensuring a cleaner and healthier future for urban environments and the planet.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Rogers Wainkwa Chia
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; Research Institute for Earth Resources, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - S Veerasingam
- Environmental Science Center, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Saif Uddin
- Environment and Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Woo-Hyun Jeon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Hee Sun Moon
- Groundwater Environment Research Center, Climate Change Response Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Jihye Cha
- Department of Geology, Kangwon National University, Chuncheon 24341, Republic of Korea; School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| | - Jejung Lee
- School of Science and Engineering, University of Missouri, Kansas City, MO 64110, USA
| |
Collapse
|
2
|
Zheng K, Wang P, Lou X, Zhou Z, Zhou L, Hu Y, Luan Y, Quan C, Fang J, Zou H, Gao X. A review of airborne micro- and nano-plastics: Sampling methods, analytical techniques, and exposure risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125074. [PMID: 39369871 DOI: 10.1016/j.envpol.2024.125074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Atmospheric Micro- and nano-plastics (MNPs) can be easily inhaled and ingested by humans and have become a global health concern. With the development of instruments and techniques, an increasing number of sampling and analytical methods have been applied to study airborne MNPs. Active samplers and passive collectors are used to collect suspended aerosols and atmospheric depositions. Microscopes and scanning electron microscopy (SEM) have been used to physically identify the MNPs, while Fourier transform infrared (FTIR), Raman spectroscopy, and Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) are used to identify the polymer compositions of the MNPs. However, the diversity of methods and strategies has greatly limited our ability to compare results and assess exposure risks. In this review, we extracted data from PubMed, Embase, and Scopus from 2018 to 2024 that reported sampling methods, analytical techniques, and abundance/deposition of airborne MNPs. Through a systematic review of the included 140 articles, we emphasized the advantages and limitations of different methods for collecting and analyzing airborne MNPs. In addition, we provided an in-depth analysis of the performance of specific methods across different airborne environments. Furthermore, the current knowledge regarding the abundance, deposition, exposure risks of airborne MNPs, and exposure risk assessment models has been discussed. Finally, we provide concrete recommendations for standardization of methods. This review identified knowledge gaps and recommended future research directions for exposure assessment of airborne MNPs.
Collapse
Affiliation(s)
- Kexin Zheng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Peng Wang
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaoming Lou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhen Zhou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Lifang Zhou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yong Hu
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yuqing Luan
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Changjian Quan
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jiayang Fang
- Taizhou Center for Disease Control and Prevention, Taizhou, Zhejiang, China
| | - Hua Zou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Xiangjing Gao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Serranti S, Capobianco G, Cucuzza P, Bonifazi G. Efficient microplastic identification by hyperspectral imaging: A comparative study of spatial resolutions, spectral ranges and classification models to define an optimal analytical protocol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176630. [PMID: 39362544 DOI: 10.1016/j.scitotenv.2024.176630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Microplastics (MPs) pollution is a global and challenging issue, necessitating the development of efficient analytical strategies for their detection to monitor their environmental impact. This study aims to define an optimal analytical protocol for characterizing MPs by hyperspectral imaging (HSI), comparing different setups based on spatial resolution, spectral range and classification models. The investigated MPs include polymers commonly found in the environment, such as polystyrene (PS), polypropylene (PP) and high-density polyethylene (HDPE), subdivided in three size classes (1000-2000 μm, 500-1000 μm, 250-500 μm). Furthermore, MP particles with diameters ranging from 30 to 250 μm were assessed to determine the limit of detection (LOD) in the different configurations. Hyperspectral images were acquired with two spatial resolutions, 150 and 30 μm/pixel, and two spectral ranges, 1000-1700 nm (NIR) and 1000-2500 nm (SWIR). Three classification models, Partial Least Square-Discriminant Analysis (PLS-DA), Error Correction Output Coding-Support Vector Machine (ECOC-SVM) and Neural Network Pattern Recognition (NNPR) were tested on the acquired images. The correctness of these models was evaluated by prediction maps and statistical parameters (Recall, Specificity and Accuracy). The results demonstrated that for MP particles larger than 250 μm, the optimal setup is a spatial resolution of 150 μm/pixel and a spectral range of 1000-1700 nm, utilizing a linear classification model like PLS-DA. This approach offers accurate predictions while being time- and cost-efficient. For MPs smaller than 250 μm, a higher spatial resolution of 30 μm/pixel with a spectral range of 1000-2500 nm and a non-linear classification method like ECOC-SVM is preferable. The LOD is 250 μm for the 150 μm/pixel resolution and ranges from 100 to 200 μm for the 30 μm/pixel resolution. These findings provide a valuable guide for selecting the appropriate HSI acquisition conditions and data processing methods to optimally characterize MPs of different sizes.
Collapse
Affiliation(s)
- Silvia Serranti
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy.
| | - Giuseppe Capobianco
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Paola Cucuzza
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| | - Giuseppe Bonifazi
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
4
|
Welsh B, Paterson AM, Yao H, McConnell C, Aherne J. The Fate of Microplastics in Rural Headwater Lake Catchments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16570-16577. [PMID: 39231004 DOI: 10.1021/acs.est.4c05435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In this study, the fluxes of microplastics (mp) were quantified during a 12-month period for three rural headwater lake catchments in Muskoka-Haliburton, south-central Ontario, Canada. A novel catchment particle balance approach was used, incorporating inputs from atmospheric deposition and stream inflows against lake outflow and sedimentation. This approach provides the first reported observation-based estimates of microplastic residence time in freshwater lakes. Atmospheric deposition had the highest daily microplastic flux (3.95-8.09 mp/m2/day), compared to the inflow streams (2.21-2.34 mp/m2/day), suggesting that it is the dominant source of microplastics to rural regions. Approximately 44-71% of the deposited microplastics were retained in the terrestrial catchments and 30-49% of the microplastics in the stream inflows were retained in the study lakes. Given that output fluxes ranged from 0.72-3.76 mp/m2/day in the sediment and 1.18-1.66 mp/m2/day in the lake outflows, the microplastic residence time was estimated to be between 3 and 12 years, suggesting that lakes are an important reservoir for microplastics. Fibers were the dominant shape in atmospheric deposition, streamwater, and lake water; however, in lake sediment, there was a higher proportion of fragments. Across all media, poly(ethylene terephthalate) was the dominant polymer identified (23%).
Collapse
Affiliation(s)
- Brittany Welsh
- School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Andrew M Paterson
- Ministry of the Environment, Conservation and Parks, Inland Waters Unit, Dorset, Ontario P0A 1E0, Canada
| | - Huaxia Yao
- Ministry of the Environment, Conservation and Parks, Inland Waters Unit, Dorset, Ontario P0A 1E0, Canada
| | - Chris McConnell
- Ministry of the Environment, Conservation and Parks, Inland Waters Unit, Dorset, Ontario P0A 1E0, Canada
| | - Julian Aherne
- School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
5
|
Jung CC, Chao YC, Hsu HT, Gong DW. Spatial and seasonal variations of atmospheric microplastics in high and low population density areas at the intersection of tropical and subtropical regions. ENVIRONMENTAL RESEARCH 2024; 263:119996. [PMID: 39284491 DOI: 10.1016/j.envres.2024.119996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/21/2024]
Abstract
There is limited information regarding spatial and seasonal variations of atmospheric microplastics (MPs) and factors influencing MPs at the intersection of tropical and subtropical regions. A one-year study was conducted at sites in a high-population-density village (HPDV) and a low-population-density village (LPDV) in Taiwan to investigate the characteristics and influencing factors of airborne MPs. The predominant shapes, sizes, and polymer compositions of MPs were fragments, 3 to 25 and 26-50 μm, and polyamide at both sites. Seasonal variation in MP morphologies was not significant. Average MP concentrations were 2.20 ± 2.97 particles/m3 and 1.92 ± 2.35 particles/m3 at the HPDV and LPDV sites, respectively, and did not differ significantly. Higher concentrations and smaller sizes of MPs were found during the summer at both sites, while the predominant wind direction was southerly or southwesterly. In samples with temperatures exceeding 25 °C, the temperature was positively associated with MP concentrations at both the HPDV and LPDV sites. These results reflect that temperature influences the variations in the concentrations and sizes of MPs at our study site. Future research should consider the adverse risks of MP inhalation during the hot season. Moreover, when sites with different population densities and levels of human activity are closed, MP concentrations will not differ significantly between these areas since airflow can transport these particles from high-population-density areas into low-population-density areas in a short time.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| | - Yuan-Chen Chao
- Department of Occupational Safety and Health, China Medical University, Taichung City, 40640, Taiwan.
| | - Hui-Tsung Hsu
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| | - Da-Wei Gong
- Department of Public Health, China Medical University, No. 100, Sec. 1, Jingmao Rd., Beitun Dist., Taichung City, 40640, Taiwan.
| |
Collapse
|
6
|
Peries SD, Sewwandi M, Sandanayake S, Kwon HH, Vithanage M. Airborne transboundary microplastics-A Swirl around the globe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124080. [PMID: 38692389 DOI: 10.1016/j.envpol.2024.124080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Microplastics are persistent pollutants discovered and extensively researched in marine, freshwater, and terrestrial ecosystems but have yet to receive attention in an atmospheric context. Although recent reports stated the presence of microplastics in the air, their global existence and distribution are not critically discussed to date. This review aimed to investigate the current status of research on atmospheric microplastics through bibliometric analysis and by comparing and summarising published research on global distribution. The review also provides a summary of methods that have been used to collect samples, identify microplastics, quantify their occurrence, and determine their transport mechanisms. The bibliometric analysis revealed that atmospheric microplastic studies predominantly originated in China. Clothing, vehicle, and tire materials were the major primary sources while house furniture, construction materials, landfills, urban dust, plastic recycling processes, and agricultural sludge were precursor secondary sources. Polyethylene, polypropylene, and polyethylene terephthalate microfibres have most frequently found in indoor and outdoor atmospheres. Level of urbanization and temporal or spatial distributions governs the fate of airborne microplastics, however, the knowledge gap in the retention and circulation of microplastics through the atmosphere is still large. Many challenges and limitations were identified in the methods used, presentation of data, aerodynamic processes facilitating atmospheric transport, and scarcity of research in spatially and temporally diverse contexts. The review concluded that there was a greater need for globalization of research, methods and data standardization, and emphasizes the potential for future research with atmospheric transportation modelling and thermochemical analysis.
Collapse
Affiliation(s)
- Sayuri Dimanthi Peries
- The UWA Institute of Agriculture, University of Western Australia, Perth, 6009, Australia
| | - Madushika Sewwandi
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Sandun Sandanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Hyun-Han Kwon
- Department of Civil and Environmental Engineering, Sejong University, Seoul, Republic of Korea
| | - Meththika Vithanage
- The UWA Institute of Agriculture, University of Western Australia, Perth, 6009, Australia; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
7
|
Wilkens JL, Calomeni-Eck AJ, Boyda J, Kennedy A, McQueen AD. Microplastic in Dredged Sediments: From Databases to Strategic Responses. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:72. [PMID: 38689078 PMCID: PMC11061003 DOI: 10.1007/s00128-024-03878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Microplastics (MPs) accumulate in sediments, yet guidelines for evaluating MP risks in dredged sediments are lacking. The objective of this study was to review existing literature on MPs in sediments to improve fundamental knowledge of MP exposures and develop a publicly available database of MPs in sediments. Twelve percent of the reviewed papers (nine studies) included sediment core samples with MP concentrations generally decreasing with depth, peaking in the top 15 cm. The remaining papers evaluated surficial grab samples (0 to 15 cm depth) from various water bodies with MPs detected in almost every sample. Median MP concentrations (items/kg dry sediment) increased in this order: lakes and reservoirs (184), estuarine (263), Great Lakes nearshore areas and tributaries (290), riverine (410), nearshore marine areas (487), dredge activities (817), and harbors (948). Dredging of recurrent shoaling sediments could be expected to contain MPs at various depths with concentrations influenced by the time elapsed since the last dredging event. These results offer key insights into the presence and variability of MPs in dredged sediments, informing environmental monitoring and risk assessment strategies.
Collapse
Affiliation(s)
- J L Wilkens
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA.
| | - A J Calomeni-Eck
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - J Boyda
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - A Kennedy
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| | - A D McQueen
- Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd, Vicksburg, MS, 39180, USA
| |
Collapse
|
8
|
Berg EM, Dila DK, Schaul O, Eros A, McLellan SL, Newton RJ, Hoellein TJ, Kelly JJ. Anthropogenic particle concentrations and fluxes in an urban river are temporally variable and impacted by storm events. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11021. [PMID: 38605502 DOI: 10.1002/wer.11021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/13/2024]
Abstract
Anthropogenic particles (AP), which include microplastics and other synthetic, semisynthetic, and anthropogenically modified materials, are pollutants of concern in aquatic ecosystems worldwide. Rivers are important conduits and retention sites for AP, and time series data on the movement of these particles in lotic ecosystems are needed to assess the role of rivers in the global AP cycle. Much research assessing AP pollution extrapolates stream loads based on single time point measurements, but lotic ecosystems are highly variable over time (e.g., seasonality and storm events). The accuracy of models describing AP dynamics in rivers is constrained by the limited studies that examine how frequent changes in discharge drive particle retention and transport. This study addressed this knowledge gap by using automated, high-resolution sampling to track AP concentrations and fluxes during multiple storm events in an urban river (Milwaukee River) and comparing these measurements to commonly monitored water quality metrics. AP concentrations and fluxes varied significantly across four storm events, highlighting the temporal variability of AP dynamics. When data from the sampling periods were pooled, there were increases in particle concentration and flux during the early phases of the storms, suggesting that floods may flush AP into the river and/or resuspend particles from the benthic zone. AP flux was closely linked to river discharge, suggesting large loads of AP are delivered downstream during storms. Unexpectedly, AP concentrations were not correlated with other simultaneously measured water quality metrics, including total suspended solids, fecal coliforms, chloride, nitrate, and sulfate, indicating that these metrics cannot be used to estimate AP. These data will contribute to more accurate models of particle dynamics in rivers and global plastic export to oceans. PRACTITIONER POINTS: Anthropogenic particle (AP) concentrations and fluxes in an urban river varied across four storm events. AP concentrations and fluxes were the highest during the early phases of the storms. Storms increased AP transport downstream compared with baseflow. AP concentrations did not correlate with other water quality metrics during storms.
Collapse
Affiliation(s)
- Elizabeth M Berg
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Deborah K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Olivia Schaul
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Audrey Eros
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Timothy J Hoellein
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - John J Kelly
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Bjedov D, Mikuška A, Gvozdić V, Glavaš P, Gradečak D, Sudarić Bogojević M. White Stork Pellets: Non-Invasive Solution to Monitor Anthropogenic Particle Pollution. TOXICS 2024; 12:236. [PMID: 38668458 PMCID: PMC11054396 DOI: 10.3390/toxics12040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
The present study applied a non-invasive method to analyse anthropogenic particles and prey items in white stork (Ciconia ciconia) pellets. Pellets (n = 20) were obtained from white stork nests during the 2020 breeding season from two sites in Croatia. In total, 7869 anthropogenic particles were isolated. The majority of particles were fragments, while previous studies on other birds often reported fibres. An ATR-FTIR polymer analysis detected glass and construction and building materials, as well as several compounds associated with plastic masses. Polymer investigation revealed the presence of dotriacontane and octacosane, which are by-products of polyethylene (PE) degradation and transformation. Additionally, the detection of vinylidene chloride (VDC) highlights the historical contribution of polyvinylidene chloride (PVDC) to plastic pollution. Significant variation in particle quantity and size between the sampling sites was detected, with larger particles found at sites associated with the metal mechanical engineering industry and agriculture. Prey assessment revealed chitin remains of large insects such as Orthoptera and Coleoptera. This research confirms the potential of pellet analysis as a valuable tool for assessing the presence of anthropogenic particles in the environment. However, further research is needed to fully understand the extent of particle ingestion, particle sources and potential impact.
Collapse
Affiliation(s)
- Dora Bjedov
- Croatian Institute for Biodiversity, BIOTA Ltd., 10000 Zagreb, Croatia;
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.S.B.)
| | - Alma Mikuška
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.S.B.)
| | - Vlatka Gvozdić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Petar Glavaš
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.S.B.)
| | - Dora Gradečak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.S.B.)
| | - Mirta Sudarić Bogojević
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.S.B.)
| |
Collapse
|
10
|
Beaurepaire M, Gasperi J, Tassin B, Dris R. COVID lockdown significantly impacted microplastic bulk atmospheric deposition rates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123354. [PMID: 38237852 DOI: 10.1016/j.envpol.2024.123354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Here, microplastic atmospheric deposition data collected at an urban site during the French national lockdown of spring 2020 is compared to deposition data from the same site in a period of normal activity. Bulk atmospheric deposition was collected on the vegetated roof of a suburban campus from the Greater Paris and analysed for microplastics using a micro-FTIR imaging methodology. Significantly lower deposition rates were measured overall during the lockdown period (median 5.4 MP m-2.d-1) than in a period of normal activity in spring 2021 (median of 29.2 MP m-2.d-1). This difference is however not observed for the smallest microplastic size class. The dominant polymers identified were PP, followed by PE and PS. Precipitation alone could not explain the differences between the two campaigns, and it is suggested that the temporary drop in human activity during lockdown is the primary cause of the reduced deposition rates. This study provides novel insight on the immediate impact of human activities on atmospheric microplastics, thus enhancing the global understanding on this topic.
Collapse
Affiliation(s)
- Max Beaurepaire
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France.
| | | | - Bruno Tassin
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France
| | - Rachid Dris
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France
| |
Collapse
|
11
|
McIlwraith HK, Dias M, Orihel DM, Rennie MD, Harrison AL, Hoffman MJ, Provencher JF, Rochman CM. A Multicompartment Assessment of Microplastic Contamination in Semi-remote Boreal Lakes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38415806 DOI: 10.1002/etc.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Microplastic contamination is ubiquitous across the globe, even in remote locations. Still, the sources and pathways of microplastics to such locations are largely unknown. To investigate microplastic contamination in a semi-remote location, we measured microplastic concentrations in nine oligotrophic lakes within and around the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Our first objective was to establish ambient concentrations of microplastics in bottom sediments, surface water, and atmospheric deposition in semi-remote boreal lakes. Across all lakes, mean shallow and deep sediment microplastic concentrations, near-surface water microplastic concentrations from in situ filtering, and dry atmospheric microplastic deposition rates were 551 ± 354 particles kg-1 , 177 ± 103 particles kg-1 , 0.2 ± 0.3 particles L-1 , and 0.4 ± 0.2 particles m-2 day-1 , respectively. Our second objective was to investigate whether microplastic contamination of these lakes is driven by point sources including local runoff and direct anthropogenic inputs or nonpoint sources such as atmospheric deposition. Lakes were selected based on three levels of anthropogenic activity-low, medium, and high-though activity levels were minimal across all study lakes compared with highly populated areas. Whereas a positive correlation would indicate that point sources were a likely pathway, we observed no relationship between the level of anthropogenic activity and microplastic contamination of surface water. Moreover, the composition of microplastics in surface water and atmospheric deposition were similar, comprising mostly polyester and acrylic fibers. Together, these results suggest that atmospheric deposition may be the main pathway of microplastics to these remote boreal lakes. Environ Toxicol Chem 2024;00:1-13. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Hayley K McIlwraith
- Department of Ecology and Evolutionary Biology, University of Toronto, St. George Campus, Toronto, Ontario, Canada
- Plymouth Marine Laboratory, Prospect Place, Plymouth, United Kingdom
| | - Minoli Dias
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Diane M Orihel
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Michael D Rennie
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
- International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Anna L Harrison
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Institute of Geological Sciences, University of Bern, Bern, Switzerland
| | - Matthew J Hoffman
- School of Mathematics and Statistics, Rochester Institute of Technology, Rochester, New York, USA
| | - Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, University of Toronto, St. George Campus, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Chandrakanthan K, Fraser MP, Herckes P. Microplastics are ubiquitous and increasing in soil of a sprawling urban area, Phoenix (Arizona). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167617. [PMID: 37804992 DOI: 10.1016/j.scitotenv.2023.167617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Microplastics are environmental contaminants that have been extensively studied in marine and aquatic environments; terrestrial ecosystems, where most microplastics originate and have the potential to accumulate, typically receive less attention. This study aims to investigate the spatial and temporal soil concentrations of microplastics in a large desert metropolitan area, the Central Arizona-Phoenix Long-Term Ecological Research (CAP-LTER) area. Soil samples from the Ecological Survey of Central Arizona (ESCA) surveys (2005 and 2015) were leveraged to study spatial distributions and the temporal change of microplastic abundances. The temporal soil microplastics data were supplemented by microplastics deposition fluxes in a central location within the area (Tempe, AZ) for a period of one year (Oct 5th, 2020 to Sept 22nd, 2021). Samples were processed and microplastics were counted under an optical microscope to obtain quantitative information of their distribution in soil. Results for the spatial variation of the microplastic abundances in soil samples in Phoenix and the surrounding areas of the Sonoran Desert from 2015 depict microplastics as ubiquitous and abundant in soils (122 to 1299 microplastics/kg) with no clear trends between different locations. Microplastics deposition fluxes show substantial deposition in the local area (71 to 389 microplastics/m2/day with an average deposition flux of 178 microplastics/m2/day) but the role of resuspension and redistribution by dust storms to deposition may contribute to the unclear spatial trends. Comparison between the 2005 and 2015 surveys show a systematic increase in the abundance of microplastics and a decrease in microplastics size. Micro-Raman spectroscopy identified a variety of plastics including PE, PS, PVC, PA, PES and PP. However, a majority of microplastics remained chemically unidentifiable. Polyethylene was present in 75 % of the sampling sites and was the most abundant polymer on average in all soil samples.
Collapse
Affiliation(s)
| | - Matthew P Fraser
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Pierre Herckes
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
13
|
Chen R, Zhao X, Wu X, Wang J, Wang X, Liang W. Research progress on occurrence characteristics and source analysis of microfibers in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115834. [PMID: 38061148 DOI: 10.1016/j.marpolbul.2023.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Synthetic microfiber pollution is a growing concern in the marine environment. However, critical issues associated with microfiber origins in marine environments have not been resolved. Herein, the potential sources of marine microfibers are systematically reviewed. The obtained results indicate that surface runoffs are primary contributors that transport land-based microfibers to oceans, and the breakdown of larger fiber plastic waste due to weathering processes is also a notable secondary source of marine microfibers. Additionally, there are three main approaches for marine microplastic source apportionment, namely, anthropogenic source classification, statistical analysis, and numerical simulations based on the Lagrangian particle tracking method. These methods establish the connections between characteristics, transport pathways and sources of microplastics, which provides new insights to further conduct microfiber source apportionment. This study helps to better understand sources analysis and transport pathways of microfibers into oceans and presents a scientific basis to further control microfiber pollution in marine environments.
Collapse
Affiliation(s)
- Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China.
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| |
Collapse
|
14
|
Rathinamoorthy R, Raja Balasaraswathi S. Impact of sewing on microfiber release from polyester fabric during laundry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166247. [PMID: 37574077 DOI: 10.1016/j.scitotenv.2023.166247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Microfibers released from textile materials are receiving greater attention due to their severe adverse effects on the environment. Although mitigation strategies have been developed for laundering, researchers uphold that it is crucial to start mitigating at the source. In that aspect, this research aims to analyze the cutting and sewing methods of knitted fabrics and their impact on the microfiber release of garments during laundry. The results of the study have confirmed that cutting and sewing methods have a significant impact on the microfiber release of a garment. The analysis of different cutting methods showed that laser and ultrasonic cutting methods reduce the microfiber release up to 20 times compared to the conventional scissor-cut edges. While comparing the different stitch types, the overlock stitch type showed reduced shedding than the other stitch types (flatlock stitch and single needle lockstitch). Our results also showed that the use of more needles increases the microfiber emission among different stitch variations of the same stitch type. For instance, a 45.27 % increase in microfiber emission was reported with the 4-thread overlock stitch (2 needles) than with the 3-thread stitch (1 needle). Regarding seam type, the proposed edge finishing seam (EFb) was effective in reducing 93 % of microfiber release as the edges are completely covered. When the effect of stitch density is considered, in the case of single needle lockstitch and flatlock stitch, the microfiber release is reduced with increased stitch density. However, a different trend was noted in the overlock stitch, which needed detailed exploration in the future. The results confirmed that a proper selection of stitch, stitch density, and seam type would reduce the microfiber release from a garment by up to 64.6 %.
Collapse
Affiliation(s)
- R Rathinamoorthy
- Department of Fashion Technology, PSG College of Technology, Coimbatore 641004, India.
| | - S Raja Balasaraswathi
- Department of Fashion Technology, National Institute of Fashion Technology, Bengaluru 560102, India
| |
Collapse
|
15
|
Kyriakoudes G, Turner A. Suspended and deposited microplastics in the coastal atmosphere of southwest England. CHEMOSPHERE 2023; 343:140258. [PMID: 37751808 DOI: 10.1016/j.chemosphere.2023.140258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Atmospheric microplastics (MPs) have been sampled from coastal southwest England during twelve periods over a 42-day timeframe in late autumn. MPs were dominated by fibres, with foams, fragments and pellets also observed. The majority of fibres were identified as the semisynthetic polymer, rayon, while other shapes were dominated by various petroleum-based thermoplastics (including polyvinyl acetate, polyvinyl alcohol, polyamide and polyester) and paints. MP concentrations suspended in air ranged from 0.016 to 0.238 items per m3 but displayed no clear dependence on wind speed or direction. Total depositional fluxes ranged from 0.47 to 3.30 m-2 h-1 and showed no clear dependence on wind conditions or electrical conductivity of precipitation (as a measure of maritime influence). However, the concentration of deposited MPs in rainwater was inversely related to rainfall volume, suggesting that incipient precipitation acts to efficiently washout microplastics. A comparison of deposited and suspended MPs by size, shape and polymer type suggests that larger fibres constructed of rayon, polyamide and acrylic are preferentially removed from the atmosphere relative to smaller, non-fibrous MPs and particles constructed of polyester. A quantitative comparison of deposited and suspended MPs provided estimates of location- and environment-specific net settling velocities of between about 7 and 180 m h-1 and corresponding residence times for an air column of 5000 m of between about 30 and 700 h. The findings of the study contribute to an improved understanding of the occurrence, transport and deposition of MPs in the atmosphere more generally.
Collapse
Affiliation(s)
- Giannis Kyriakoudes
- School of Geography, Earth and Environmental Sciences, University of Plymouth University Plymouth, PL4 8AA, UK
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth University Plymouth, PL4 8AA, UK.
| |
Collapse
|
16
|
Hee YY, Hanif NM, Weston K, Latif MT, Suratman S, Rusli MU, Mayes AG. Atmospheric microplastic transport and deposition to urban and pristine tropical locations in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166153. [PMID: 37562616 DOI: 10.1016/j.scitotenv.2023.166153] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Atmospheric microplastic transport is an important delivery pathway with the deposition of microplastics to ecologically important regions raising environmental concerns. Investigating atmospheric delivery pathways and their deposition rates in different ecosystems is necessary to understanding its global impact. In this study, atmospheric deposition was collected at three sites in Malaysia, two urban and one pristine, covering the Northeast and Southwest monsoons to quantify the role of this pathway in Southeast Asia. Air mass back trajectories showed long-range atmospheric transport of microplastics to all sites with atmospheric deposition varying from 114 to 689 MP/m2/day. For the east coast of Peninsular Malaysia, monsoonal season influenced microplastic transport and deposition rate with peak microplastic deposition during the Northeast monsoon due to higher wind speed. MP morphology combined with size fractionation and plastic type at the coastal sites indicated a role for long-range marine transport of MPs that subsequently provided a local marine source to the atmosphere at the coastal sites.
Collapse
Affiliation(s)
- Yet Yin Hee
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia.
| | - Norfazrin Mohd Hanif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Keith Weston
- Independent environmental consultant, Norwich, United Kingdom
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Suhaimi Suratman
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Mohd Uzair Rusli
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Andrew G Mayes
- School of Chemistry, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
17
|
Matos DM, Ramos JA, Bessa F, Silva V, Rodrigues I, Antunes S, Dos Santos I, Coentro J, Brandão ALC, Batista de Carvalho LAE, Marques MPM, Santos S, Paiva VH. Anthropogenic debris ingestion in a tropical seabird community: Insights from taxonomy and foraging distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165437. [PMID: 37437636 DOI: 10.1016/j.scitotenv.2023.165437] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Oceans have been considered as an unlimited supply of goods and services, but resource extraction and waste disposal became ubiquitous and have been damaging the health of marine ecosystems. Finding suitable sentinel species of the human impacts on the oceans is thus imperative, since they may work as early warnings of disruptive situations. In this study, we investigated how taxonomy and foraging distribution influenced the occurrence of anthropogenic debris among five seabird species inhabiting the tropical Atlantic region. Occurrence of anthropogenic debris was assessed using faeces of breeding individuals as a proxy of ingestion. A total of 268 particles were extracted from all samples. The categories "fragments" and "fibres", as well as the colour "blue", were the most prevalent characteristics across species. There was a high diversity of polymers from cellulosic particles to synthetic plastics (Anthropogenic Cellulosic 26.9 %; Polyester 7.7 %; Varnish 5.8 %; Polypropylene 1.9 %). Species with a more coastal foraging strategy exhibited higher occurrence and number of anthropogenic debris when compared to species foraging comparably more in pelagic areas. This suggests that anthropogenic debris are more prevalent in coastal foraging areas, where human activities occur in higher number and frequency (e.g., fisheries) and sources of freshwater input from inland are at close distance. These results provide more evidence to the growing perception on the ubiquity and diversity of anthropogenic debris in the marine environment, and further support the usefulness of using seabirds as bio-indicators of anthropogenic pollution in both neritic and oceanic regions.
Collapse
Affiliation(s)
- D M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Filipa Bessa
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Vítor Silva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Isabel Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - Stefan Antunes
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - I Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Coentro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L C Brandão
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sara Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
18
|
Parashar N, Hait S. Plastic rain-Atmospheric microplastics deposition in urban and peri-urban areas of Patna City, Bihar, India: Distribution, characteristics, transport, and source analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131883. [PMID: 37348371 DOI: 10.1016/j.jhazmat.2023.131883] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Evidence of atmospheric microplastics (MPs) deposition in India is scarce though reports of MPs pollution in other environmental media exist. Henceforth, this study for the first time examines and compares the abundance, characteristics, transport, and source analysis of atmospheric MPs in the urban and peri-urban areas of Patna city, Bihar, India. Wet atmospheric fallout samples were collected and analyzed for MPs deposition rate. The results showed that the mean MPs concentrations at each site were 1959.6 ± 205 (urban) and 1320.4 ± 126 (peri-urban) MPs/m2/day. The deposited MPs were mainly transparent fibers and fragments with a mean size of 347.9 ± 189.2 µm. Polyethylene terephthalate and polypropylene were the most abundant polymer found at both sites. Morphological characteristics revealed surface degradation and deposition of metal contaminants on the identified MPs. Meteorological parameters (wind direction and rainfall intensity) were significantly associated with the distribution of atmospheric MPs in the study area. The cluster mean backward trajectory suggested vehicular emissions, construction activities, and waste mismanagement as the potential sources of MPs. Findings of the present work necessitates future studies in gaining a deeper understanding of the fate, movement, and potential health hazards associated with atmospheric MPs.
Collapse
Affiliation(s)
- Neha Parashar
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India
| | - Subrata Hait
- Department of Civil and Environmental Engineering, Indian Institute of Technology Patna, Bihar 801 106, India.
| |
Collapse
|
19
|
Chang DY, Jeong S, Shin J, Park J, Park CR, Choi S, Chun CH, Chae MY, Lim BC. First quantification and chemical characterization of atmospheric microplastics observed in Seoul, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121481. [PMID: 37003584 DOI: 10.1016/j.envpol.2023.121481] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
This study is the first report on atmospheric microplastics (MPs) observed in five outdoor environments, including an urban forest, a business center, commercial areas, and a public transportation hub in Seoul, South Korea. Air samples were collected using an active air pump sampler for 24 h in each area only on days without rainfall. All observed microplastics are secondary microplastics, in the form of irregularly-shaped fragments or fibers produced through various degradation processes, rather than being primarily produced like microbeads. The abundance of atmospheric MPs varied depending on the environment (i.e., region, height, and time) from 0.33 to 1.21 MP m-3, with the average number of MPs being 0.72 MP m-3 (standard deviation ± 0.39). MPs in the urban forest was observed to be 27% lower in abundance than that in the urban center which is ∼3 km away. The central business district was observed to have a 25% higher abundance during weekdays than on weekends. Our results show the ubiquity of MPs in various areas from high-rise buildings to forests tens of kilometers away from their direct sources, and a positive correlation between the abundance of MP and human activity. Morphologically, the fragment type (87.4%) predominated over the fiber type (12.6%), and chemically, polypropylene (PP) and polyethylene terephthalate (PET) components accounted for 65% of the total MP. PP polymers were found in all observation sites and contributed to 59% of the total MP fragments. The observed fibrous MPs were mainly composed of PET (72.7%) and PP (18.2%) polymers. Compared to other large cities (Shanghai, Beijing, Paris), Seoul is exposed to low levels of atmospheric MPs and high proportions of PP polymers. This study is limited to atmospheric MPs observed in summer and further investigation of MPs is needed to comprehensively understand the distribution and cycle of MPs based on long-term monitoring of atmospheric MPs.
Collapse
Affiliation(s)
- Dong Yeong Chang
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Sujong Jeong
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea.
| | - Jaewon Shin
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Jungmin Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Chan Ryul Park
- Urban Forests Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sumin Choi
- Urban Forests Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Chi-Hwan Chun
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| | - Min-Young Chae
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| | - Byung Chul Lim
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| |
Collapse
|
20
|
O'Brien S, Rauert C, Ribeiro F, Okoffo ED, Burrows SD, O'Brien JW, Wang X, Wright SL, Thomas KV. There's something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162193. [PMID: 36828069 DOI: 10.1016/j.scitotenv.2023.162193] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Literature regarding microplastics in the atmosphere has advanced in recent years. However, studies have been undertaken in isolation with minimal collaboration and exploration of the relationships between air, deposition and dust. This review collates concentrations (particle count and mass-based), shape, size and polymetric characteristics for microplastics in ambient air (m3), deposition (m2/day), dust (microplastics/g) and snow (microplastics/L) from 124 peer-reviewed articles to provide a holistic overview and analysis of our current knowledge. In summary, ambient air featured concentrations between <1 to >1000 microplastics/m3 (outdoor) and <1 microplastic/m3 to 1583 ± 1181 (mean) microplastics/m3 (indoor), consisting of polyethylene terephthalate, polyethylene, polypropylene. No difference (p > 0.05) was observed between indoor and outdoor concentrations or the minimum size of microplastics (p > 0.5). Maximum microplastic sizes were larger indoors (p < 0.05). Deposition concentrations ranged between 0.5 and 1357 microplastics/m2/day (outdoor) and 475 to 19,600 microplastics/m2/day (indoor), including polyethylene, polystyrene, polypropylene, polyethylene terephthalate. Concentrations varied between indoor and outdoor deposition (p < 0.05), being more abundant indoors, potentially closer to sources/sinks. No difference was observed between the minimum or maximum reported microplastic sizes within indoor and outdoor deposition (p > 0.05). Road dust concentrations varied between 2 ± 2 and 477 microplastics/g (mean), consisting of polyvinyl chloride, polyethylene, polypropylene. Mean outdoor dust concentrations ranged from <1 microplastic/g (remote desert) to between 18 and 225 microplastics/g, comprised of polyethylene terephthalate, polyamide, polypropylene. Snow concentrations varied between 0.1 and 30,000 microplastics/L, containing polyethylene, polyamide, polypropylene. Concentrations within indoor dust varied between 10 and 67,000 microplastics/g, including polyethylene terephthalate, polyethylene, polypropylene. No difference was observed between indoor and outdoor concentrations (microplastics/g) or maximum size (p > 0.05). The minimum size of microplastics were smaller within outdoor dust (p > 0.05). Although comparability is hindered by differing sampling methods, analytical techniques, polymers investigated, spectral libraries and inconsistent terminology, this review provides a synopsis of knowledge to date regarding atmospheric microplastics.
Collapse
Affiliation(s)
- Stacey O'Brien
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Cassandra Rauert
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Francisca Ribeiro
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4 4QD, Stocker Road, Exeter, UK
| | - Elvis D Okoffo
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Stephen D Burrows
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4 4QD, Stocker Road, Exeter, UK
| | - Jake W O'Brien
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Xianyu Wang
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Stephanie L Wright
- MRC Centre for Environment and Health, Imperial College London, London SE1 9NH, UK; National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Environmental Exposures and Health, Imperial College London, London SW7 2AZ, UK
| | - Kevin V Thomas
- Queensland Alliance of Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
21
|
Wang B, Chen X, Xiong X, Wu W, He Q, Hu H, Wu C. Spatial analysis of the influence on "microplastic communities" in the water at a medium scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163788. [PMID: 37149188 DOI: 10.1016/j.scitotenv.2023.163788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The issue of microplastics in freshwater has been growing in concern. Besides their abundance, the characteristics of microplastics are also important issues. The concept of "microplastic communities" has been utilized to assess differences in microplastic characteristics. In this study, we utilized the "microplastic community" approach to evaluate the impact of land use on microplastic characteristics in water at a provincial scale in China. The abundance of microplastics in water bodies in Hubei Province varied between 0.33 items/L and 5.40 items/L, with an average of 1.74 items/L. Microplastics were significantly more abundant in rivers than in lakes and reservoirs, and their abundance was negatively correlated with the distance from the nearest residential district of sampling sites. Similarities of microplastic communities were significantly different in mountainous and plain areas. Anthropogenic surfaces increased microplastic abundance and tended to decrease the size of microplastics, whereas natural vegetation had the opposite effect. The effect of land use on microplastic community similarity was greater than that of geographic distance. However, spatial scale limits the effect of various factors on microplastic community similarity. This study revealed the comprehensive influence of land use on microplastic characteristics in water and emphasized the importance of spatial scale in the study of microplastic characteristics.
Collapse
Affiliation(s)
- Biao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Chen
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Xiong Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Weiju Wu
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Qiankun He
- Hubei Academy of Environmental Sciences, Wuhan 430072, China
| | - Hongjuan Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
22
|
Bao M, Xiang X, Huang J, Kong L, Wu J, Cheng S. Microplastics in the Atmosphere and Water Bodies of Coastal Agglomerations: A Mini-Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2466. [PMID: 36767835 PMCID: PMC9915211 DOI: 10.3390/ijerph20032466] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are ubiquitously in various environments from the equator to the poles. Coastal agglomerations act as both a source and sink connecting the global microplastic cycles of oceans and continents. While the problem of microplastics is particularly severe and complex in the coastal zones, where both inland and marine pollution are concentrated, the present study aimed to provide hot topics and trends of coastal urban microplastic studies and to review the researches on microplastic pollution in the atmosphere and water bodies in coastal agglomerations in terms of characteristics, behavior, and health threat of microplastics. The results of the bibliometric analysis showed an increase in the annual output of microplastic research. Research hot topics and clusters were analyzed using the VOSviewer. Characteristics of microplastics varied in abundance, size, and polymer type in different environments and countries. Furthermore, coastal cities are taken as a system to sort out the input, output, and internal transmission pathways of microplastics. The health threat of microplastics to urban residents was briefly reviewed and the exposure and health risks of microplastics to infants and young children were of particular concern. Detailed and comprehensive studies on intervention and reduction in the transmission of microplastics between the atmosphere and water bodies, whether microplastics are harmful to infants and young children, and measures to reduce the risk of microplastic exposure are needed.
Collapse
Affiliation(s)
- Mengrong Bao
- Institute of Eco-Environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoqin Xiang
- Institute of Eco-Environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianshi Huang
- Institute of Eco-Environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingwei Kong
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Juan Wu
- Institute of Eco-Environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shuiping Cheng
- Institute of Eco-Environmental Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
23
|
Jansen MAK, Barnes PW, Bornman JF, Rose KC, Madronich S, White CC, Zepp RG, Andrady AL. The Montreal Protocol and the fate of environmental plastic debris. Photochem Photobiol Sci 2023:10.1007/s43630-023-00372-x. [PMID: 36705849 DOI: 10.1007/s43630-023-00372-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Microplastics (MPs) are an emerging class of pollutants in air, soil and especially in all aquatic environments. Secondary MPs are generated in the environment during fragmentation of especially photo-oxidised plastic litter. Photo-oxidation is mediated primarily by solar UV radiation. The implementation of the Montreal Protocol and its Amendments, which have resulted in controlling the tropospheric UV-B (280-315 nm) radiation load, is therefore pertinent to the fate of environmental plastic debris. Due to the Montreal Protocol high amounts of solar UV-B radiation at the Earth's surface have been avoided, retarding the oxidative fragmentation of plastic debris, leading to a slower generation and accumulation of MPs in the environment. Quantifying the impact of the Montreal Protocol in reducing the abundance of MPs in the environment, however, is complicated as the role of potential mechanical fragmentation of plastics under environmental mechanical stresses is poorly understood.
Collapse
Affiliation(s)
- M A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork, Ireland.
| | - P W Barnes
- Biological Sciences and Environmental Program, Loyola University New Orleans, New Orleans, LA, USA
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia
| | - K C Rose
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - C C White
- Exponent, Inc, Bowie, MD, 20715, USA
| | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Napper IE, Parker-Jurd FNF, Wright SL, Thompson RC. Examining the release of synthetic microfibres to the environment via two major pathways: Atmospheric deposition and treated wastewater effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159317. [PMID: 36220472 DOI: 10.1016/j.scitotenv.2022.159317] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Research on the discharge of synthetic microfibres to aquatic environments has typically focused on laundering, where fibres can be discharged via wastewater effluent. However emerging research suggests that microfibres generated during the wear of textiles in normal use could present a major, additional, pathway for microfibre pollution to the environment. This study aimed to quantify and compare the quantities of microfibre entering the marine environment via both these pathways; wastewater discharge and atmospheric deposition. Areas of high and low population density were also evaluated. Samples were collected in and around two British cities (Bristol and Plymouth) both of which are located on tidal waters. Fibres originating from the atmosphere were deposited at an average rate of 81.6 fibres m2 d-1 across urban and rural areas. Treated wastewater effluent contained on an average 0.03 synthetic fibres L-1. Based on our results we predict ~20,000-500,000 microfibres could be discharged per day from the Wastewater Treatment Plants studied. When the two pathways were compared. Atmospheric deposition of synthetic microfibres appeared the dominant pathway, releasing fibres at a rate several orders of magnitude greater than via treated wastewater effluent. Potential options to reduce the release of microfibres to the environment are discussed and we conclude that intervention at the textile design stage presents the most effective approach. In order to guide policy intervention to inform the Plastics Treaty UNEA 5.2, future work should focus on understanding which permutations of textile design have the greatest influence fibre shedding, during both everyday use and laundering.
Collapse
Affiliation(s)
- I E Napper
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake's Circus, Plymouth PL4 8AA, UK
| | - F N F Parker-Jurd
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake's Circus, Plymouth PL4 8AA, UK.
| | - S L Wright
- MRC Centre for Environment and Health, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, UK
| | - R C Thompson
- International Marine Litter Research Unit, School of Biological and Marine Sciences, University of Plymouth, Drake's Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
25
|
Moss Bags as Biomonitors of Atmospheric Microplastic Deposition in Urban Environments. BIOLOGY 2023; 12:biology12020149. [PMID: 36829428 PMCID: PMC9953122 DOI: 10.3390/biology12020149] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Microplastics (plastic particles <5 mm) were first identified in the environment during the 1970s and have since become ubiquitous across every environmental compartment. However, few studies have focused on atmospheric microplastics, and even fewer have used biological monitoring to assess their atmospheric deposition. Here, we assess the efficacy of moss bags as an active biomonitoring technique for atmospheric microplastic deposition. Moss (Pleurozium schreberi) bags were exposed in duplicate at nine deployment sites across a gradient of urban intensity in southern Ontario, Canada. A total of 186 microplastics (mp) were detected in the moss bags, resulting in a mean accumulation of 7.9 mp g-1 dry weight moss across all sites during the exposure period (45 days). The median microplastic length was 0.56 mm (range 0.03-4.51 mm), and the dominant microplastic type was fibres (47%), followed by fragments (39%). Microplastic accumulation significantly increased with urban intensity, ranging from 3.7 mp g-1 in low-density suburban areas to 10.7 mp g-1 in densely populated and trafficked urban areas. In contrast, microfibres by proportion dominated in suburban (62%) compared with urban areas (33%). Microplastic deposition was estimated to range from 21 to 60 mp m-2 day-1 across the nine deployment sites. The results suggest that moss bags may be a suitable technique for the active biomonitoring of atmospheric microplastic deposition in urban environments.
Collapse
|
26
|
Bullard JE, Zhou Z, Davis S, Fowler S. Breakdown and Modification of Microplastic Beads by Aeolian Abrasion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:76-84. [PMID: 36519925 PMCID: PMC9835823 DOI: 10.1021/acs.est.2c05396] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Saltation is an important wind erosion process that can cause the modification and breakdown of particles by aeolian abrasion. It is recognized that microplastic particles can be transported by wind, but the effect of saltation on microplastic properties is unknown. This study examined the impact of simulated saltation alongside quartz grains on the size, shape, and surface properties of spherical microplastic beads. The diameter of the microplastics was reduced by 30-50% over 240-300 h of abrasion with a mass loss of c. 80%. For abrasion periods up to 200 h, the microplastic beads remained spherical with minimal change to overall shape. Over 95% of the fragments of plastic removed from the surface of the microbeads during the abrasion process had a diameter of ≤10 μm. In addition, during the abrasion process, fine particles derived from breakdown of the quartz grains became attached to the surfaces of the microbeads resulting in a reduction in carbon and an increase in silicon detected on the particle surface. The results suggest that microplastics may be mechanically broken down during aeolian saltation and small fragments produced have the potential for long distance transport as well as being within the size range for human respiration.
Collapse
Affiliation(s)
- Joanna E. Bullard
- Geography
and Environment, Loughborough University, Leicestershire LE11 3TU, U.K.
| | - Zhaoxia Zhou
- Loughborough
Materials Characterisation Centre, Department of Materials, Loughborough University, Leicestershire LE11 3TU, U.K.
| | - Sam Davis
- Loughborough
Materials Characterisation Centre, Department of Materials, Loughborough University, Leicestershire LE11 3TU, U.K.
| | - Shaun Fowler
- Loughborough
Materials Characterisation Centre, Department of Materials, Loughborough University, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
27
|
Lei B, Bissonnette JR, Hogan ÚE, Bec AE, Feng X, Smith RDL. Customizable Machine-Learning Models for Rapid Microplastic Identification Using Raman Microscopy. Anal Chem 2022; 94:17011-17019. [PMID: 36445839 DOI: 10.1021/acs.analchem.2c02451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Raman spectroscopy is commonly used in microplastics identification, but equipment variations yield inconsistent data structures that disrupt the development of communal analytical tools. We report a strategy to overcome the issue using a database of high-resolution, full-window Raman spectra. This approach enables customizable analytical tools to be easily created─a feature we demonstrate by creating machine-learning classification models using open-source random-forest, K-nearest neighbors, and multi-layer perceptron algorithms. These models yield >95% classification accuracy when trained on spectroscopic data with spectroscopic data downgraded to 1, 2, 4, or 8 cm-1 spacings in Raman shift. The accuracy can be maintained even in non-ideal conditions, such as with spectroscopic sampling rates of 1 kHz and when microplastic particles are outside the focal plane of the laser. This approach enables the creation of classification models that are robust and adaptable to varied spectrometer setups and experimental needs.
Collapse
Affiliation(s)
- Benjamin Lei
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada
| | - Justine R Bissonnette
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada
| | - Úna E Hogan
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada
| | - Avery E Bec
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada
| | - Xinyi Feng
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada
| | - Rodney D L Smith
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada.,Waterloo Artificial Intelligence Institute, University of Waterloo, 200 University Avenue W., Waterloo, OntarioN2L 3G1, Canada
| |
Collapse
|
28
|
Finnegan AMD, Süsserott R, Gabbott SE, Gouramanis C. Man-made natural and regenerated cellulosic fibres greatly outnumber microplastic fibres in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119808. [PMID: 35926740 DOI: 10.1016/j.envpol.2022.119808] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric microplastics have been widely reported in studies around the world. Microfibres are often the dominant morphology found by researchers, although synthetic (i.e., plastic) microfibres are typically just a fraction of the total number of microfibres, with other, non-synthetic, cellulosic microfibres frequently being reported. This study set out to review existing literature to determine the relative proportion of cellulosic and synthetic atmospheric anthropogenic (man-made) microfibres, discuss trends in the microfibre abundances, and outline proposed best-practices for future studies. We conducted a systematic review of the existing literature and identified 33 peer-reviewed articles from Scopus and Google Scholar searches that examined cellulosic microfibres and synthetic microfibres in the atmosphere. Multiple analyses indicate that cellulosic microfibres are considerably more common than synthetic microfibres. FT-IR and Raman spectroscopy data obtained from 24 studies, showed that 57% of microfibres were cellulosic and 23% were synthetic. The remaining were either inorganic, or not determined. In total, 20 studies identified more cellulosic microfibres, compared to 11 studies which identified more synthetic microfibres. The data show that cellulosic microfibres are 2.5 times more abundant between 2016 and 2022, however, the proportion of cellulosic microfibres appear to be decreasing, while synthetic microfibres are increasing. We expect a crossover to happen by 2030, where synthetic microfibres will be dominant in the atmosphere. We propose that future studies on atmospheric anthropogenic microfibres should include information on natural and regenerated cellulosic microfibres, and design studies which are inclusive of cellulosic microfibres during analysis and reporting. This will allow researchers to monitor trends in the composition of atmospheric microfibers and will help address the frequent underestimation of cellulosic microfibre abundance in the atmosphere.
Collapse
Affiliation(s)
| | - Rebekah Süsserott
- Geography Department, National University of Singapore, 1 Arts Link, #03-01 Block AS2, Singapore 117570, Singapore
| | - Sarah E Gabbott
- School of Geography, Geology and Environment, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Chris Gouramanis
- Research School of Earth Sciences, The Australian National University, Building 142, Mills Road, Acton, ACT 2601, Australia
| |
Collapse
|