1
|
Paillassa J, Pepin S, Ethier G, Lamarque LJ, Maire V. Carboxylation capacity is the main limitation of carbon assimilation in High Arctic shrubs. PLANT, CELL & ENVIRONMENT 2024; 47:5315-5329. [PMID: 39189974 DOI: 10.1111/pce.15097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Increases in shrub height, biomass and canopy cover are key whole-plant features of warming-induced vegetation change in tundra. We investigated leaf functional traits underlying photosynthetic capacity of Arctic shrub species, particularly its main limiting processes such as mesophyll conductance. In this nutrient-limited ecosystem, we expect leaf nitrogen concentration to be the main limiting factor for photosynthesis. We measured the net photosynthetic rate at saturated light (Asat) in three Salix species throughout a glacial valley in High-Arctic tundra and used a causal approach to test relationships between leaf stomatal and mesophyll conductances (gsc, gm), carboxylation capacity (Vcmax), nitrogen and phosphorus concentration (Narea, Parea) and leaf mass ratio (LMA). Arctic Salix species showed no difference in Asat compared to a global data set, while being characterized by higher Narea, Parea and LMA. Vcmax, gsc and gm independently increased Asat, with Vcmax as its main limitation. We highlighted a nitrogen-influenced pathway for increasing photosynthesis in the two prostrate mesic habitat species. In contrast, the erect wetland habitat Salix richardsonii mainly increased Asat with increasing gsc. Overall, our study revealed high photosynthetic capacities of Arctic Salix species but contrasting regulatory pathways that may influence shrub ability to respond to environmental changes in High Arctic tundra.
Collapse
Affiliation(s)
- Jennifer Paillassa
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Steeve Pepin
- Département des sols et de génie agroalimentaire, Université Laval, Québec, Quebec, Canada
| | - Gilbert Ethier
- Département de phytologie, Université Laval, Québec, Quebec, Canada
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- Chaire en Écologie Fonctionnelle Arctique, Centre d'études nordiques, Université du Québec à Trois-Rivières, Trois Rivières, Quebec, Canada
- Centre d'études nordiques, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Viveiros E, Francisco BS, Dutra FB, de Souza LA, Inocente MC, Bastos ACV, da Costa GFL, Barbosa MC, Martins RP, Passaretti RA, Fernandes MJP, de Oliveira JST, Shiguehara APP, Manzoli EC, Teração BS, Piotrowski I, Piña-Rodrigues FCM, da Silva JMS. How the Adequate Choice of Plant Species Favors the Restoration Process in Areas Susceptible to Extreme Frost Events. BIOLOGY 2023; 12:1369. [PMID: 37997968 PMCID: PMC10669021 DOI: 10.3390/biology12111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
This work aimed to evaluate the impacts caused by extreme frost events in an ecological restoration area. We grouped the species in three ways: (1) type of trichome coverage; (2) shape of the seedling crown; and (3) functional groups according to the degree of damage caused by frost. The variables of the restored area and species characteristics were selected to be subjected to linear generalization analysis models (GLMs). A total of 104 individuals from seven species were sampled. The most affected species were Guazuma ulmifolia Lam. (98% of leaves affected), followed by Cecropia pachystachia Trécul and Hymenea courbaril L. (both 97%), Inga vera Willd. (84%), and Senegalia polyphylla (DC.) Britton & Rose with 75%. Tapirira guianensis Aubl. was considered an intermediate species, with 62% of the crown affected. Only Solanum granulosoleprosum Dunal was classified as slightly affected, with only 1.5% of leaves affected. With the GLM analysis, it was verified that the interaction between the variables of leaf thickness (Χ² = 37.1, df = 1, p < 0.001), trichome coverage (Χ² = 650.5, df = 2, p < 0.001), and leaf structure culture (Χ² = 54.0, df = 2, p < 0.001) resulted in a model with high predictive power (AIC = 927,244, BIC = 940,735, Χ² = 6947, R² = 0.74, p < 0.001). Frost-affected crown cover was best explained by the interaction between the three functional attributes (74%). We found that there is a tendency for thicker leaves completely covered in trichomes to be less affected by the impact of frost and that the coverage of the affected crown was greatly influenced by the coverage of trichomes. Seedlings with leaves completely covered in trichomes, thicker leaves, and a funneled or more open crown structure are those that are most likely to resist frost events. The success of ecological restoration in areas susceptible to extreme events such as frost can be predicted based on the functional attributes of the chosen species. This can contribute to a better selection of species to be used to restore degraded areas.
Collapse
Affiliation(s)
- Emerson Viveiros
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
- AES Brasil, Bauru 17064-868, Brazil; (R.P.M.); (R.A.P.); (M.J.P.F.)
| | - Bruno Santos Francisco
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Felipe Bueno Dutra
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Lindomar Alves de Souza
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Mariane Cristina Inocente
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Aline Cipriano Valentim Bastos
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Glória Fabiani Leão da Costa
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Maycon Cristiano Barbosa
- Undergraduate Program in Forest Engineering, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil;
| | | | | | | | - Julia Siqueira Tagliaferro de Oliveira
- Undergraduate Program in Biologycal Sciences, Department of Biologycal Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil;
| | - Ana Paula Ponce Shiguehara
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Enzo Coletti Manzoli
- Postgraduate Program in Planning and Use of Renewable Resources, Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (E.V.); (F.B.D.); (L.A.d.S.); (M.C.I.); (A.P.P.S.); (E.C.M.); (J.M.S.d.S.)
| | - Bruna Santos Teração
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| | - Ivonir Piotrowski
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| | - Fátima Conceição Márquez Piña-Rodrigues
- AES Brasil, Bauru 17064-868, Brazil; (R.P.M.); (R.A.P.); (M.J.P.F.)
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| | - José Mauro Santana da Silva
- AES Brasil, Bauru 17064-868, Brazil; (R.P.M.); (R.A.P.); (M.J.P.F.)
- Department of Environmental Sciences, Federal University of São Carlos, Campus Sorocaba, São Paulo 18052-780, Brazil; (B.S.T.); (I.P.)
| |
Collapse
|
3
|
Rieksta J, Li T, Davie‐Martin CL, Aeppli LCB, Høye TT, Rinnan R. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:23-35. [PMID: 37284597 PMCID: PMC10168049 DOI: 10.1002/pei3.10100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/08/2023]
Abstract
Plants release a complex blend of volatile organic compounds (VOCs) in response to stressors. VOC emissions vary between contrasting environments and increase with insect herbivory and rising temperatures. However, the joint effects of herbivory and warming on plant VOC emissions are understudied, particularly in high latitudes, which are warming fast and facing increasing herbivore pressure. We assessed the individual and combined effects of chemically mimicked insect herbivory, warming, and elevation on dwarf birch (Betula glandulosa) VOC emissions in high-latitude tundra ecosystems in Narsarsuaq, South Greenland. We hypothesized that VOC emissions and compositions would respond synergistically to warming and herbivory, with the magnitude differing between elevations. Warming increased emissions of green leaf volatiles (GLVs) and isoprene. Herbivory increased the homoterpene, (E)-4,8-dimethyl-1,3,7-nonatriene, emissions, and the response was stronger at high elevation. Warming and herbivory had synergistic effects on GLV emissions. Dwarf birch emitted VOCs at similar rates at both elevations, but the VOC blends differed between elevations. Several herbivory-associated VOC groups did not respond to herbivory. Harsher abiotic conditions at high elevations might not limit VOC emissions from dwarf birch, and high-elevation plants might be better at herbivory defense than assumed. The complexity of VOC responses to experimental warming, elevation, and herbivory are challenging our understanding and predictions of future VOC emissions from dwarf birch-dominated ecosystems.
Collapse
Affiliation(s)
- Jolanta Rieksta
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Tao Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research StationKey Laboratory for Bio‐resource and Eco‐environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduChina
| | - Cleo L. Davie‐Martin
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Laurids Christian Brogaard Aeppli
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| | - Toke Thomas Høye
- Department of Bioscience and Arctic Research CentreAarhus UniversityAarhus CDenmark
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Center for Permafrost (CENPERM)Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenCopenhagen KDenmark
| |
Collapse
|