1
|
Ji Y, Zhang Y, Chen X, Guo A, Zhang W, Liu X, Wang H, Sun H, Yan D, Li Y, Fang W, Cao A, Wang Q. Sustainable reuse of plant waste through biofumigation: controlling soil-borne pathogens and enhancing soil health via microbial regulation. PEST MANAGEMENT SCIENCE 2025. [PMID: 40159814 DOI: 10.1002/ps.8806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Soil-borne pathogens severely impact soil health and crop growth. Biofumigation is an eco-friendly method and supports global efforts to reduce chemical fertilizers and pesticides. However, the application in China is limited mainly due to high cost. There is a lack of systematic research on how plant waste biofumigation can improve soil health. We were the first to systematically examine the effects of biofumigation with cabbage and cauliflower wastes on soil and plant factors, and their contributions to crop growth. RESULTS Results indicated that biofumigation achieved an inhibition rate of soil-borne pathogens between 66.98% and 92.70% at the end of the process, which persisted at 52.89-83.95% during harvest. Additionally, it enhanced soil physicochemical properties, enzyme activity, and the abundance of beneficial microorganisms by 0.41-119.12%. Crop yield also increased by 21.70-77.83%. Comparing the standard cabbage treatment with a higher dosage revealed that the latter did not significantly enhance pathogen inhibition rates but improved yield, suggesting the involvement of alternative mechanisms. A structural equation model revealed that Firmicutes and Bacteroidota increased crop yield by influencing ammonium nitrogen, organic matter, and catalase activity, with ammonium nitrogen being the most significant factor (0.74). CONCLUSION These findings suggest that biofumigation with Brassica waste provides effective control of soil-borne pathogens at a reduced cost. Additionally, it improves soil fertility and can partially replace chemical fumigants and fertilizers. By minimizing chemical inputs, biofumigation contributes to improved soil health and sustainability. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yutong Ji
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Anmin Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai Sun
- Beijing Plant Protection Station, Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing, China
| | - Dongdong Yan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Fang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aocheng Cao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxia Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Kumar S, Diksha, Sindhu SS, Kumar R. Harnessing phosphate-solubilizing microorganisms for mitigation of nutritional and environmental stresses, and sustainable crop production. PLANTA 2025; 261:95. [PMID: 40131541 DOI: 10.1007/s00425-025-04669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
MAIN CONCLUSION Phosphate-solubilizing microorganisms enhance nutrients availability, mitigate environmental stresses, and increase plant growth. The bioengineering of phosphate-solubilizing microbes and host plants may further improve their efficacy for increasing crop yield. Unsustainable agricultural practices are followed in current crop production systems worldwide for resolving food demand issues of ever-increasing human population. In addition, global food crop production is further affected due to continuous climatic change, erratic rains, and environmental stresses during the recent past causing threat to microbial as well as plant biodiversity. The application of plant beneficial microorganisms into agricultural practices has emerged recently as an innovative and sustainable approach to increase crop yield with limited resources and in vulnerable environment. These beneficial microbes improve crop productivity by enhancing nutrients' availability and mitigation of abiotic stresses along with suppression of plant diseases. However, there have been limited studies on the stress ameliorative role of phosphate-solubilizing microorganisms (PSMs), and there is still a need to elucidate the contribution of PSMs in improving plant health and crop productivity under harsh environmental conditions. This review summarizes the role of PSMs in improving phosphorus availability in soil through solubilization or mineralization of organic phosphate, and by assisting plants in amelioration of environmental stresses. Other beneficial activities of PSMs, such as release of phytohormones, production of ACC deaminase, strengthening of antioxidant system, and induction of systemic resistance, also contribute toward stress mitigation and plant growth promotion under stressful environments. Improvement in efficacy of PSMs and host plants using genetic engineering techniques has been discussed leading to increases in crop yields. However, further research is needed to develop sustainable climate-resilient approach by improving plant growth-promoting activities of PSMs even under environmental stresses to increase soil fertility and crop production in different agroecosystems.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Diksha
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| | - Rakesh Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
3
|
Ma J, Liu D, Zhao P, Dou M, Yang X, Liu S, Nian F, Tong W, Li J, Xu Z, Zhang L, Zhang H, Li Y, Deng X, Liu Y. Intercropping of tobacco and maize at seedling stage promotes crop growth through manipulating rhizosphere microenvironment. FRONTIERS IN PLANT SCIENCE 2024; 15:1470229. [PMID: 39445144 PMCID: PMC11496092 DOI: 10.3389/fpls.2024.1470229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
Introduction Changes in the rhizosphere microbiome and metabolites resulting from crop intercropping can significantly enhance crop growth. While there has been an increasing number of studies on various crop combinations, research on the intercropping of tobacco and maize at seedling stage remains limited. Methods This study is the first to explore rhizosphere effects of intercropping between tobacco and maize seedling stages, we analyzed the nitrogen, phosphorus and potassium nutrients in the soil, and revealed the important effects on soil microbial community composition and metabolite profiles, thereby regulating crop growth and improving soil balance. Results and discussion Compared with mono-cropping, intercropping increased the biomass of the two crops and promoted the nutrient absorption of nitrogen, phosphorus and potassium. Under intercropping conditions, the activities of sucrase, catalase and nitrate reductase in tobacco rhizosphere soil and the content of available potassium, the activities of nitrate reductase and acid phosphatase in maize rhizosphere soil were significantly increasing. Rhizosphere soil bacterial and fungal communities such as Sphingomonas, Massilia, Humicola and Penicillium respond differently to crop planting patterns, and soil dominant microbial communities are regulated by environmental factors such as pH, Organic Matter, Available Potassium, Nitrate Reductase, and Urease Enzyme. Network analysis showed that soil microbial communities were more complex after intercropping, and the reciprocal relationship between bacteria and fungi was enhanced. The difference of metabolites in soil between intercropping and monocropping system was mainly concentrated in galactose metabolism, starch and sucrose metabolism pathway, and the content of carbohydrate metabolites was significantly higher than that of monocropping soil. Key metabolites such as D-Sucrose, D-Fructose-6-Phosphate, D-Glucose-1-Phosphatel significantly influence the composition of dominant microbial communities such as Sphingomonas and Penicillium. This study explained the effects of intercropping between flue-cured tobacco and maize on the content of soil metabolites and soil microbial composition in rhizosphere soil, and deepened the understanding that intercropping system can improve the growth of flue-cured crops seedlings through rhizosphere effects.
Collapse
Affiliation(s)
- Junmei Ma
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Di Liu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Peiyan Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Min Dou
- College of Resource and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiuhua Yang
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shulei Liu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fuzhao Nian
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenjie Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Junying Li
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - ZhaoLi Xu
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Liuchen Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Hong Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Yongzhong Li
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Yunnan Tobacco International Co., Ltd, Kunming, Yunnan, China
| | - Yating Liu
- College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Ni Z, Zhang X, Guo S, Pan H, Gong Z. Impact of Temperature Elevation on Microbial Communities and Antibiotic Degradation in Cold Region Soils of Northeast China. TOXICS 2024; 12:667. [PMID: 39330595 PMCID: PMC11436246 DOI: 10.3390/toxics12090667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
This study systematically investigated the effects of temperature changes on the degradation of antibiotics in soil, as well as the alterations in microbial community structure and aggregation, through a field warming experiment in a greenhouse. Compared to non-warming soil, the warming treatment significantly accelerated the degradation rate of tetracyclines during soil freezing and mitigated the impact of environmental fluctuations on soil microbial communities. The greenhouse environment promoted the growth and reproduction of a wide range of microbial taxa, but the abundance of Myxococcota was positively correlated with antibiotic concentrations in both treatments, suggesting a potential specific association with antibiotic degradation processes. Long-term warming in the greenhouse led to a shift in the assembly process of soil microbial communities, with a decrease in dispersal limitation and an increase in the drift process. Furthermore, co-occurrence network analysis revealed a more loosely structured microbial community in the greenhouse soil, along with the emergence of new characteristic taxa. Notably, more than 60% of the key taxa that connected the co-occurrence networks in both groups belonged to rare taxa, indicating that rare taxa play a crucial role in maintaining community structure and function.
Collapse
Affiliation(s)
- Zijun Ni
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.N.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaorong Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.N.); (X.Z.)
- National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Shuhai Guo
- National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Huaqi Pan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.N.); (X.Z.)
- National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-Physicochemical Synergistic Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| |
Collapse
|
5
|
Olanrewaju OS, Glick BR, Babalola OO. Metabolomics-guided utilization of beneficial microbes for climate-resilient crops. Curr Opin Chem Biol 2024; 79:102427. [PMID: 38290195 DOI: 10.1016/j.cbpa.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa.
| |
Collapse
|
6
|
Lanzavecchia G, Frascarelli G, Rocchetti L, Bellucci E, Bitocchi E, Di Vittori V, Sillo F, Ferraris I, Carta G, Delledonne M, Nanni L, Papa R. Genotype Combinations Drive Variability in the Microbiome Configuration of the Rhizosphere of Maize/Bean Intercropping System. Int J Mol Sci 2024; 25:1288. [PMID: 38279288 PMCID: PMC10815965 DOI: 10.3390/ijms25021288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize (Zea mays L.) and bean (Phaseolus vulgaris L., Phaseolus coccineus L.) genotype combinations. Through amplicon sequencing of bacterial 16S rRNA genes from rhizosphere samples, our results unveil that the intercropping condition alters the rhizosphere bacterial communities, but that the degree of this impact is substantially affected by specific genotype combinations. Overall, intercropping allows the recruitment of exclusive bacterial species and enhances community complexity. Nevertheless, combinations of maize and bean genotypes determine two distinct groups characterized by higher or lower bacterial community diversity and complexity, which are influenced by the specific bean line associated. Moreover, intercropped maize lines exhibit varying propensities in recruiting bacterial members with more responsive lines showing preferential interactions with specific microorganisms. Our study conclusively shows that genotype has an impact on the rhizosphere microbiome and that a careful selection of genotype combinations for both species involved is essential to achieve compatibility optimization in intercropping.
Collapse
Affiliation(s)
- Giovanna Lanzavecchia
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Lorenzo Rocchetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant, Strada delle Cacce 73, 10135 Torino, Italy;
| | - Irene Ferraris
- Department of Biotechnologies, Strada le Grazie 15, 37134 Verona, Italy; (I.F.); (G.C.); (M.D.)
| | - Giada Carta
- Department of Biotechnologies, Strada le Grazie 15, 37134 Verona, Italy; (I.F.); (G.C.); (M.D.)
| | - Massimo Delledonne
- Department of Biotechnologies, Strada le Grazie 15, 37134 Verona, Italy; (I.F.); (G.C.); (M.D.)
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| |
Collapse
|
7
|
Boyno G, Rezaee Danesh Y, Demir S, Teniz N, Mulet JM, Porcel R. The Complex Interplay between Arbuscular Mycorrhizal Fungi and Strigolactone: Mechanisms, Sinergies, Applications and Future Directions. Int J Mol Sci 2023; 24:16774. [PMID: 38069097 PMCID: PMC10706366 DOI: 10.3390/ijms242316774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.
Collapse
Affiliation(s)
- Gökhan Boyno
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran
| | - Semra Demir
- Department of Plant Protection, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - Necmettin Teniz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Van Yuzuncu Yil University, Van 65090, Türkiye
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain
| |
Collapse
|
8
|
Yuan T, Ren W, Wang Z, Fry EL, Tang S, Yin J, Zhang J, Jia Z. How does the pattern of root metabolites regulating beneficial microorganisms change with different grazing pressures? FRONTIERS IN PLANT SCIENCE 2023; 14:1180576. [PMID: 37484473 PMCID: PMC10361787 DOI: 10.3389/fpls.2023.1180576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Grazing disturbance can change the structure of plant rhizosphere microbial communities and thereby alter the feedback to promote plant growth or induce plant defenses. However, little is known about how such changes occur and vary under different grazing pressures or the roles of root metabolites in altering the composition of rhizosphere microbial communities. In this study, the effects of different grazing pressures on the composition of microbial communities were investigated, and the mechanisms by which different grazing pressures changed rhizosphere microbiomes were explored with metabolomics. Grazing changed composition, functions, and co-expression networks of microbial communities. Under light grazing (LG), some saprophytic fungi, such as Lentinus sp., Ramichloridium sp., Ascobolus sp. and Hyphoderma sp., were significantly enriched, whereas under heavy grazing (HG), potentially beneficial rhizobacteria, such as Stenotrophomonas sp., Microbacterium sp., and Lysobacter sp., were significantly enriched. The beneficial mycorrhizal fungus Schizothecium sp. was significantly enriched in both LG and HG. Moreover, all enriched beneficial microorganisms were positively correlated with root metabolites, including amino acids (AAs), short-chain organic acids (SCOAs), and alkaloids. This suggests that these significantly enriched rhizosphere microbial changes may be caused by these differential root metabolites. Under LG, it is inferred that root metabolites, especially AAs such as L-Histidine, may regulate specific saprophytic fungi to participate in material transformations and the energy cycle and promote plant growth. Furthermore, to help alleviate the stress of HG and improve plant defenses, it is inferred that the root system actively regulates the synthesis of these root metabolites such as AAs, SCOAs, and alkaloids under grazing interference, and then secretes them to promote the growth of some specific plant growth-promoting rhizobacteria and fungi. To summarize, grasses can regulate beneficial microorganisms by changing root metabolites composition, and the response strategies vary under different grazing pressure in typical grassland ecosystems.
Collapse
Affiliation(s)
- Ting Yuan
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhaoming Wang
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Shiming Tang
- Key Laboratory of Model Innovation in Forage Production Efficiency, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jingjing Yin
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiatao Zhang
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhenyu Jia
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| |
Collapse
|
9
|
Li T, Wang M, Cui R, Li B, Wu T, Liu Y, Geng G, Xu Y, Wang Y. Waterlogging stress alters the structure of sugar beet rhizosphere microbial community structure and recruiting potentially beneficial bacterial. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115172. [PMID: 37354564 DOI: 10.1016/j.ecoenv.2023.115172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Waterlogging has been shown to have a significant inhibitory effect on plant growth. However, the response mechanisms of the soil environment of sugar beet seedlings under waterlogging conditions still need to be fully understood. This study aimed to investigate the effects of waterlogging treatments on the content of effective nutrients and the microbial communities in the rhizosphere and non-rhizosphere using high-throughput sequencing. We set up waterlogging and non-waterlogging treatments, sampled sugar beet seedlings after 10 days of waterlogging, determined the effective soil nutrients in the rhizosphere and non-rhizosphere of the plants, and analyzed the differences in microbial diversity at ten days of waterlogging. The results showed that waterlogging significantly affected available potassium (AK) content. The Ak content of waterlogged soil was significantly higher than that of non-waterlogged soil. Waterlogging caused no significant difference in available nitrogen (AN) content and pH. Moreover, the plant growth-promoting bacteria Pseudomonas was significantly enriched in sugar beet waterlogged rhizospheres compared with the non-waterlogged ones. Similarly, the harmful fungi Gibellulopsis and Alternaria were enriched in sugar beet non-waterlogged rhizosphere. The network analysis revealed that waterlogging built a less complex root-microbial network than non-waterlogging. These findings implied that sugar beets subjected to waterlogging stress were enriched with beneficial microorganisms in the rhizosphere, potentially alleviating the stress.
Collapse
Affiliation(s)
- Tai Li
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Meihui Wang
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Rufei Cui
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Bingchen Li
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Tong Wu
- College of Earth and Environmental Sciences, the University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yonglong Liu
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Gui Geng
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China.
| | - Yao Xu
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China
| | - Yuguang Wang
- Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, 74Xuefu Road, Harbin 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74Xuefu Road, Harbin 150080, China.
| |
Collapse
|
10
|
Yuan M, Zhang D, Wang Z, Zhu Z, Sun H, Wang W, Han D, Qu Z, Ma B, Wang J, Wang L, Han D. Salt altered rhizosphere fungal community and induced soybean recruit specific species to ameliorate salt stress. Front Microbiol 2023; 14:1142780. [PMID: 37260678 PMCID: PMC10227517 DOI: 10.3389/fmicb.2023.1142780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 06/02/2023] Open
Abstract
Different crop genotypes showed different adaptability to salt stress, which is partly attributable to the microorganisms in the rhizosphere. Yet, knowledge about how fungal communities of different genotypes in soybean respond to salt stress is limited. Here, qPCR and ITS sequencing were used to assess the response of rhizobial fungal communities of resistant and susceptible soybean to salt stress. Moreover, we isolated two fungal species recruited by resistant soybeans for validation. The assembly of fungal community structure might be strongly linked to alterations in fungal abundance and soil physicochemical properties. Salt stress derived structural differences in fungal communities of resistant and susceptible genotypes. The salt-resistant genotype appeared to recruit some fungal taxa to the rhizosphere to help mitigating salt stress. An increase of fungal taxa with predicted saprotrophic lifestyles might help promoting plant growth by increasing nutrient availability to the plants. Compared with the susceptible genotypes, the resistant genotypes had more stronger network structure of fungi. Lastly, we verified that recruited fungi, such as Penicillium and Aspergillus, can soybean adapt to salt stress. This study provided a promising approach for rhizospheric fungal community to enhance salt tolerance of soybean from the perspective of microbiology and ecology.
Collapse
Affiliation(s)
- Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Di Zhang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhen Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Zhijia Zhu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Haoyue Sun
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Wei Wang
- Institute of Soil Fertilizer and Environmental Resources, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Dezhi Han
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe, China
| | - Zhongcheng Qu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Junqiang Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Lianxia Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Dongwei Han
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| |
Collapse
|