1
|
Huang Z, Gustave W, Bai S, Li Y, Li B, Elçin E, Jiang B, Jia Z, Zhang X, Shaheen SM, He F. Challenges and opportunities in commercializing whole-cell bioreporters in environmental application. ENVIRONMENTAL RESEARCH 2024; 262:119801. [PMID: 39147190 DOI: 10.1016/j.envres.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Since the initial introduction of whole-cell bioreporters (WCBs) nearly 30 years ago, their high sensitivity, selectivity, and suitability for on-site detection have rendered them highly promising for environmental monitoring, medical diagnosis, food safety, biomanufacturing, and other fields. Especially in the environmental field, the technology provides a fast and efficient way to assess the bioavailability of pollutants in the environment. Despite these advantages, the technology has not been commercialized. This lack of commercialization is confusing, given the broad application prospects of WCBs. Over the years, numerous research papers have focused primarily on enhancing the sensitivity and selectivity of WCBs, with little attention paid to their wider commercial applications. So far, there is no a critical review has been published yet on this topic. Therefore, in this article we critically reviewed the research progress of WCBs over the past three decades, assessing the performance and limitations of current systems to understand the barriers to commercial deployment. By identifying these obstacles, this article provided researchers and industry stakeholders with deeper insights into the challenges hindering market entry and inspire further research toward overcoming these barriers, thereby facilitating the commercialization of WCBs as a promising technology for environmental monitoring.
Collapse
Affiliation(s)
- Zefeng Huang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, 4912, Bahamas
| | - Shanshan Bai
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yongshuo Li
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Boling Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215123, China; Meadows Center for Water and the Environment, Texas State University, San Marcos, TX, 78666, USA
| | - Evrim Elçin
- Department of Agricultural Biotechnology, Division of Enzyme and Microbial Biotechnology, Faculty of Agriculture, Aydın Adnan Menderes University, Aydın, 09970, Turkey
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Feng He
- Institute of Environmental Processes and Pollution Control, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Kim Y, Cheong HM, Choi G, Choi KM, Chung EJ, Kim A, Kim SG, Kim S, Lee JS, Yang DK, Hong SB. Strengthening the Korean Network of Microbial Culture Collections in the Microbiome Era. MYCOBIOLOGY 2024; 52:207-213. [PMID: 39445132 PMCID: PMC11494697 DOI: 10.1080/12298093.2024.2372917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 10/25/2024]
Abstract
Microbes are critical contributors in main areas of biotechnology, including green, red, and white biotechnology. This is why the importance of the preservation of microbial resources cannot be emphasized enough. Culture collections are repositories not only for the preservation and maintenance of a large variety of microbial resources and the associated data but also for their distribution in a quality-controlled manner. The mission of culture collections facilitates and supports utilization of microbial resources for research, education, and industrial purposes. Led by the World Federation for Culture Collections, an international organization committed to fostering the activities of culture collections of microorganisms and cell lines, more than 850 culture collections from 80 countries and regions work together to ensure the perpetuation of microbial resources. In addition, domestic networks, such as Japan Society for Culture Collections and United States Culture Collection Network along with regional networks for Europe, Latin America, and Asia thrive to ensure the long-term viability of microbial resources. The Republic of Korea recently took the first step in networking through the coordination of six ministries which house nine national microbial culture collections. With an explosion in microbiome research and a dramatic increase in the number of microbiome samples, the considerable challenge of culture collections will therefore be implementing the biobanking infrastructure of microbiome samples. Creating a domestic network of national culture collections is a key factor in efficiently and comprehensively managing nation-led microbiome research projects, particularly resulting microbiome samples. In this context, this review aims to provide an overview of microbial culture collection network and their future role to address the challenge in the microbiome era.
Collapse
Affiliation(s)
- Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Hyang Min Cheong
- National Culture Collection for Pathogen, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Grace Choi
- Ministry of Oceans and Fisheries, National Marine Biodiversity Institute of Korea, Seocheon, Republic of Korea
| | - Kyung-Min Choi
- Department of Bioresource Industrialization, Honam National Institute of Biological Resources, Mokpo, Republic of Korea
| | - Eu Jin Chung
- Bio-Resources Bank Division, Nakdonggang National Institute of Biological Resources, Sangju, Republic of Korea
| | - Ahran Kim
- Korean Culture Collection of Aquatic Microorganisms, National Institute of Fisheries Science, Ministry of Oceans and Fisheries, Busan, Republic of Korea
| | - Song-Gun Kim
- Korean Collection for Type Culture, Korea Research Institute of Bioscience and Biotechnology, Ministry of Science and ICT, Jeongeup, Republic of Korea
| | - Soonok Kim
- Wildlife Biological Resources Bank, National Institute of Biological Resources, Ministry of Environment, Incheon, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Culture, Korea Research Institute of Bioscience and Biotechnology, Ministry of Science and ICT, Jeongeup, Republic of Korea
| | - Dong-Kun Yang
- Korean Veterinary Culture Collection, Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon, Republic of Korea
| | - Seung-Beom Hong
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
3
|
Bilal M. Editorial: Insights in microbiotechnology: 2022. Front Microbiol 2024; 15:1293087. [PMID: 38868094 PMCID: PMC11167075 DOI: 10.3389/fmicb.2024.1293087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdańsk, Poland
- EkoTech Center, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
4
|
Aguado-Santacruz GA, Arreola-Tostado JM, Aguirre-Mancilla C, García-Moya E. Use of systemic biofertilizers in sugarcane results in highly reproducible increments in yield and quality of harvests. Heliyon 2024; 10:e28750. [PMID: 38596061 PMCID: PMC11002039 DOI: 10.1016/j.heliyon.2024.e28750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/28/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
The utilization of a novel (systemic) biofertilizer containing Pseudomonas fluorescens, Azospirillum brasilense, and Bacillus subtilis and possessing the technology to facilitate the entry of bacteria through the stomata, was evaluated at three localities in Mexico (Potrero Nuevo, Veracruz; Ameca, Jalisco; and Champotón, Campeche) in two sugarcane varieties (NCO-310 and Mex 57-473) at different time scales. Inoculation of the systemic biofertilizer was imposed over the local agricultural management of the sugarcane; chemical fertilization of the experimental parcels at Potrero Nuevo was done using 70-20-20 and 120-80-80 at Ameca and Champotón. Three doses of the biofertilizer per hectare were applied during the annual productive cycle of sugarcane at each site; one year at Potrero Nuevo and Champotón; and six years at Ameca. The annual sugarcane yield was evaluated at each site. Additionally, sugar quality (°Brix or sucrose content) was evaluated at the three localities, while different variables of stalk performance were also measured at Ameca and Champotón. Our data provide evidence that this systemic biofertilizer consistently and reliably increased the sugarcane yield at all localities during the time of evaluation, ranging from 73.7 tons ha-1 at Potrero Nuevo (2.5 times increase; P < 0.05) and 77.7 tons ha-1 at Ameca (1.9 times increase; P < 0.05) to 23.8 tons ha-1 at Champotón (1.4 times increase; P < 0.05). This increase in sugarcane biomass was related to increased tillering rather than increased stalk height or diameter. This novel biological product improved the sugarcane quality in terms of °Brix (P < 0.05, 2.6° difference) and sucrose content (P < 0.5, 0.7% difference).
Collapse
Affiliation(s)
- Gerardo Armando Aguado-Santacruz
- BIOqualitum. Oriente 7 # 158, Ciudad Industrial, Celaya, Guanajuato, 38010, Mexico
- Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 6.5 Carretera Celaya-San Miguel de Allende, Celaya, Guanajuato, 38110, Mexico
| | | | - César Aguirre-Mancilla
- Tecnológico Nacional de México / IT de Roque. Km 8 Carretera Celaya - Juventino Rosas, C.P. 38110, Celaya, Guanajuato, Mexico
| | - Edmundo García-Moya
- Colegio de Postgraduados, Postgrado en Botánica, Montecillo, Texcoco, Estado de México, Mexico
| |
Collapse
|
5
|
Ashok PP, Dasgupta D, Ray A, Suman SK. Challenges and prospects of microbial α-amylases for industrial application: a review. World J Microbiol Biotechnol 2023; 40:44. [PMID: 38114825 DOI: 10.1007/s11274-023-03821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023]
Abstract
α-Amylases are essential biocatalysts representing a billion-dollar market with significant long-term global demand. They have varied applications ranging from detergent, textile, and food sectors such as bakery to, more recently, biofuel industries. Microbial α-amylases have distinct advantages over their plant and animal counterparts owing to generally good activities and better stability at temperature and pH extremes. With the scope of applications expanding, the need for new and improved α-amylases is ever-growing. However, scaling up microbial α-amylase technology from the laboratory to industry for practical applications is impeded by several issues, ranging from mass transfer limitations, low enzyme yields, and energy-intensive product recovery that adds to high production costs. This review highlights the major challenges and prospects for the production of microbial α-amylases, considering the various avenues of industrial bioprocessing such as culture-independent approaches, nutrient optimization, bioreactor operations with design improvements, and product down-streaming approaches towards developing efficient α-amylases with high activity and recyclability. Since the sequence and structure of the enzyme play a crucial role in modulating its functional properties, we have also tried to analyze the structural composition of microbial α-amylase as a guide to its thermodynamic properties to identify the areas that can be targeted for enhancing the catalytic activity and thermostability of the enzyme through varied immobilization or selective enzyme engineering approaches. Also, the utilization of inexpensive and renewable substrates for enzyme production to isolate α-amylases with non-conventional applications has been briefly discussed.
Collapse
Affiliation(s)
- Patel Pratima Ashok
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diptarka Dasgupta
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anjan Ray
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil K Suman
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Dos Santos MSN, Ody LP, Kerber BD, Araujo BA, Oro CED, Wancura JHC, Mazutti MA, Zabot GL, Tres MV. New frontiers of soil fungal microbiome and its application for biotechnology in agriculture. World J Microbiol Biotechnol 2023; 39:287. [PMID: 37632593 DOI: 10.1007/s11274-023-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.
Collapse
Affiliation(s)
- Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Lissara P Ody
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Bruno D Kerber
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Beatriz A Araujo
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Carolina E D Oro
- Department of Food Engineering, Integrated Regional University of Alto Uruguay and Missions, 1621, Sete de Setembro Av., Fátima, Erechim, RS 99709-910, Brazil
| | - João H C Wancura
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil.
| |
Collapse
|
7
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
8
|
Muñoz-Carvajal E, Araya-Angel JP, Garrido-Sáez N, González M, Stoll A. Challenges for Plant Growth Promoting Microorganism Transfer from Science to Industry: A Case Study from Chile. Microorganisms 2023; 11:microorganisms11041061. [PMID: 37110484 PMCID: PMC10140820 DOI: 10.3390/microorganisms11041061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Research on the plant growth promoting microorganisms (PGPM) is increasing strongly due to the biotechnological potential for the agricultural, forestry, and food industry. The benefits of using PGPM in crop production are well proven; however, their incorporation in agricultural management is still limited. Therefore, we wanted to explore the gaps and challenges for the transfer of biotechnological innovations based on PGPM to the agricultural sector. Our systematic review of the state of the art of PGPM research and knowledge transfer takes Chile as an example. Several transfer limiting aspects are identified and discussed. Our two main conclusions are: neither academia nor industry can meet unfounded expectations during technology transfer, but mutually clarifying their needs, capabilities, and limitations is the starting point for successful collaborations; the generation of a collaborative innovation environment, where academia as well as public and private stakeholders (including the local community) take part, is crucial to enhance the acceptance and integration of PGPM on the way to sustainable agriculture.
Collapse
Affiliation(s)
- Eduardo Muñoz-Carvajal
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720256, Chile
| | - Juan Pablo Araya-Angel
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720256, Chile
| | - Nicolás Garrido-Sáez
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de La Serena, La Serena 1720256, Chile
| | - Máximo González
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena 1720256, Chile
| | - Alexandra Stoll
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas, La Serena 1720256, Chile
- Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena 1720256, Chile
| |
Collapse
|
9
|
Tran C, Horyanto D, Stanley D, Cock IE, Chen X, Feng Y. Antimicrobial Properties of Bacillus Probiotics as Animal Growth Promoters. Antibiotics (Basel) 2023; 12:407. [PMID: 36830317 PMCID: PMC9952206 DOI: 10.3390/antibiotics12020407] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Antibiotic growth promoters (AGPs) suppress the growth of infectious pathogens. These pathogens negatively impact agricultural production worldwide and often cause health problems if left untreated. Here, we evaluate six Bacillus strains (BPR-11, BPR-12, BPR-13, BPR-14, BPR-16 and BPR-17), which are known for their ability to survive harsh environmental conditions, as AGP replacements in animal feed. Four of these Bacillus strains (BPR-11, BPR-14, BPR-16 and BPR-17) showed antimicrobial activity against the pathogenic strains Clostridium perfringens, Escherichia coli and Staphylococcus aureus at 25 μg/mL, with BPR-16 and BPR-17 also able to inhibit Pseudomonas aeruginosa and Salmonella enterica at 100 μg/mL. Further chemical investigation of BPR-17 led to the identification of eight metabolites, namely C16, C15, C14 and C13 surfactin C (1-4), maculosin (5), maculosine 2 (6), genistein (7) and daidzein (8). Purified compounds (1-4) were able to inhibit all the tested pathogens with MIC values ranging from 6.25 to 50 μg/mL. Maculosin (5) and maculosine 2 (6) inhibited C. perfringens, E. coli and S. aureus with an MIC of 25 μg/mL while genistein (7) and daidzein (8) showed no activity. An animal trial involving feeding BPR-11, BPR-16 and BPR-17 to a laboratory poultry model led to an increase in animal growth, and a decrease in feed conversion ratio and mortality. The presence of surfactin C analogues (3-4) in the gut following feeding with probiotics was confirmed using an LC-MS analysis. The investigation of these Bacillus probiotics, their metabolites, their impacts on animal performance indicators and their presence in the gastrointestinal system illustrates that these probiotics are effective alternatives to AGPs.
Collapse
Affiliation(s)
- Charlie Tran
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD 4111, Australia;
| | - Darwin Horyanto
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (D.H.); (D.S.)
- Bioproton Pty Ltd., Brisbane, QLD 4110, Australia;
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD 4702, Australia; (D.H.); (D.S.)
| | - Ian E. Cock
- School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia;
| | | | - Yunjiang Feng
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Brisbane, QLD 4111, Australia;
| |
Collapse
|
10
|
The Fashion Industry Needs Microbiology: Opportunities and Challenges. mSphere 2023; 8:e0068122. [PMID: 36744949 PMCID: PMC10117041 DOI: 10.1128/msphere.00681-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fashion industry is the second most polluting industry in the world, representing a 2 trillion dollars and growing valuation. Fashion design practices have been perpetuating an industrial-focused approach, which relies mostly in the economic improvement through fast cycles of product development. Additionally, the fashion industry has also been closed to either multidisciplinary or transdisciplinary initiatives outside the scope of the artistic disciplines. Therefore, innovative approaches are needed to solve fashion industrial challenges. One of the most promising fields to tackle current environmental and technological problems in the fashion industry is microbiology. Through the emergent field of synthetic biology, the number of tools and approaches available is increasing and they can already be seen in niche applications. Despite the current advances and urgent need for change, there is still a long way until a more sustainable fashion industry is achieved.
Collapse
|
11
|
Liu Y, Cai D, Li X, Wu Q, Ding P, Shen L, Yang J, Hu G, Wu J, Zhang L. Occurrence, fate, and risk assessment of antibiotics in typical pharmaceutical manufactories and receiving water bodies from different regions. PLoS One 2023; 18:e0270945. [PMID: 36662697 PMCID: PMC9858356 DOI: 10.1371/journal.pone.0270945] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/21/2022] [Indexed: 01/21/2023] Open
Abstract
This study aimed to investigate the presence and persistence of antibiotics in wastewater of four typical pharmaceutical manufactories in China and receiving water bodies and suggest the removal of antibiotics by the wastewater treatment process. It also evaluated the environmental impact of antibiotic residues through wastewater discharge into receiving water bodies. The results indicated that thirteen antibiotics were detected in wastewater samples with concentrations ranging from 57.03 to 726.79 ng/L. Fluoroquinolones and macrolides were the most abundant antibiotic classes found in wastewater samples, accounting for 42.5% and 38.7% of total antibiotic concentrations, respectively, followed by sulfonamides (16.4%) and tetracyclines (2.4%). Erythromycin-H2O, lincomycin, ofloxacin, and trimethoprim were the most frequently detected antibiotics; among these antibiotics, the concentration of ofloxacin was the highest in most wastewater samples. No significant difference was found in different treatment processes used to remove antibiotics in wastewater samples. More than 50% of antibiotics were not completely removed with a removal efficiency of less than 70%. The concentration of detected antibiotics in the receiving water bodies was an order of magnitude lower than that in the wastewater sample due to dilution. An environmental risk assessment showed that lincomycin and ofloxacin could pose a high risk at the concentrations detected in effluents and a medium risk in their receiving water bodies, highlighting a potential hazard to the health of the aquatic ecosystem. Overall, The investigation was aimed to determine and monitor the concentration of selected antibiotics in 4 typical PMFs and their receiving water bodies, and to study the removal of these substances in PMFs. This study will provide significant data and findings for future studies on antibiotics-related pollution control and management in water bodies.
Collapse
Affiliation(s)
- Yuanfei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, China
| | - Dan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Qingyao Wu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
- School of Public Health and Emergency Management, South University of Science and Technology of China, Shenzhen, Guangdong, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Liangchen Shen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Jian Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Bhattacharjee R, Kumar L, Mukerjee N, Anand U, Dhasmana A, Preetam S, Bhaumik S, Sihi S, Pal S, Khare T, Chattopadhyay S, El-Zahaby SA, Alexiou A, Koshy EP, Kumar V, Malik S, Dey A, Proćków J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomed Pharmacother 2022; 155:113658. [PMID: 36162370 DOI: 10.1016/j.biopha.2022.113658] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Anti-microbial resistance (AMR) has recently emerged as an area of high interest owing to the rapid surge of AMR phenotypes. Metal oxide NPs (MeONPs) have been identified as novel phytomedicine and have recently peaked a lot of interest due to their potential applications in combating phytopathogens, besides enhancing plant growth and yields. Numerous MeONPs (Ti2O, MgO, CuO, Ag2O, SiO2, ZnO, and CaO) have been synthesized and tested to validate their antimicrobial roles without causing toxicity to the cells. This review discusses the application of the MeONPs with special emphasis on anti-microbial activities in agriculture and enlists how cellular toxicity caused through reactive oxygen species (ROS) production affects plant growth, morphology, and viability. This review further highlights the two-facet role of silver and copper oxide NPs including their anti-microbial applications and toxicities. Furthermore, the factor modulating nanotoxicity and immunomodulation for cytokine production has also been discussed. Thus, this article will not only provide the researchers with the potential bottlenecks but also emphasizes a comprehensive outline of breakthroughs in the applicability of MeONPs in agriculture.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Uttpal Anand
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Ram Nagar, Doiwala, Dehradun 248016, India
| | - Subham Preetam
- Institute of Technical Education and Research, Siksha O Anusandhan (Deemed to be University), Bhubaneswar 751030, India
| | - Samudra Bhaumik
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Sihi
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Sanjana Pal
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Soham Chattopadhyay
- Department of Zoology, Maulana Azad College, Kolkata, Kolkata 700013, West Bengal, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW2770, Australia & AFNP Med, Wien 1030, Austria
| | - Eapen P Koshy
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, Uttar Pradesh, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| |
Collapse
|
13
|
Aloo BN, Tripathi V, Makumba BA, Mbega ER. Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. FRONTIERS IN PLANT SCIENCE 2022; 13:1002448. [PMID: 36186083 PMCID: PMC9523260 DOI: 10.3389/fpls.2022.1002448] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Recent decades have witnessed increased agricultural production to match the global demand for food fueled by population increase. Conventional agricultural practices are heavily reliant on artificial fertilizers that have numerous human and environmental health effects. Cognizant of this, sustainability researchers and environmentalists have increased their focus on other crop fertilization mechanisms. Biofertilizers are microbial formulations constituted of indigenous plant growth-promoting rhizobacteria (PGPR) that directly or indirectly promote plant growth through the solubilization of soil nutrients, and the production of plant growth-stimulating hormones and iron-sequestering metabolites called siderophores. Biofertilizers have continually been studied, recommended, and even successfully adopted for the production of many crops in the world. These microbial products hold massive potential as sustainable crop production tools, especially in the wake of climate change that is partly fueled by artificial fertilizers. Despite the growing interest in the technology, its full potential has not yet been achieved and utilization still seems to be in infancy. There is a need to shed light on the past, current, and future prospects of biofertilizers to increase their understanding and utility. This review evaluates the history of PGPR biofertilizers, assesses their present utilization, and critically advocates their future in sustainable crop production. It, therefore, updates our understanding of the evolution of PGPR biofertilizers in crop production. Such information can facilitate the evaluation of their potential and ultimately pave the way for increased exploitation.
Collapse
Affiliation(s)
- Becky N. Aloo
- Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - Vishal Tripathi
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Billy A. Makumba
- Department of Biological and Physical Sciences, Moi University, Eldoret, Kenya
| | - Ernest R. Mbega
- Department of Sustainable Agriculture and Biodiversity Conservation, Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania
| |
Collapse
|