1
|
Wang B, Ma Y, Cao P, Tang X, Xin J. Ball Milling and Magnetic Modification Boosted Methylene Blue Removal by Biochar Obtained from Water Hyacinth: Efficiency, Mechanism, and Application. Molecules 2024; 29:5141. [PMID: 39519782 PMCID: PMC11547763 DOI: 10.3390/molecules29215141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Ball milling is a feasible and promising method of biochar modification that can significantly increase its adsorption ability to methylene blue (MB). This study synthesized nine biochars derived from water hyacinth under different pyrolysis temperatures and modified with ball milling and Fe3O4. The structural properties of the pristine and ball-milled magnetic biochars were investigated and employed to adsorb MB. The results showed that ball milling significantly enhanced the specific surface area, total pore volume, and C-, N-, and O-containing groups of biochars, especially in low-temperature pyrolysis biochars. The Langmuir isotherm and the pseudo-secondary kinetic model fitted well with the MB adsorption process on biochars. After ball-milled magnetic modification, the adsorption capacity of biochar at 350 °C for MB was increased to 244.6 mg g-1 (8-fold increase), owing to an increase in accessible functional groups. MB removal efficiencies by low-temperature pyrolysis biochars were easily affected by pH, whereas high-temperature pyrolysis biochars could effectively remove MB in a wide pH range. WQM1, with the high adsorption capacity and stability, provided the potential to serve as an adsorbent for MB removal. Based on DFT calculations, the chemisorption and electrostatic interactions were the primary mechanism for enhancing MB removal with ball-milled magnetic biochar at low-temperature pyrolysis, followed by H-bonding, π-π interaction, hydrophobic interaction, and pore filling.
Collapse
Affiliation(s)
- Bei Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421000, China; (B.W.); (P.C.); (X.T.)
| | - Yayun Ma
- School of Metallurgy and Environment, Central South University, Changsha 410083, China;
- Dongjiang Environmental Protection Co., Ltd., Shenzhen 518104, China
| | - Pan Cao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421000, China; (B.W.); (P.C.); (X.T.)
| | - Xinde Tang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421000, China; (B.W.); (P.C.); (X.T.)
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421000, China; (B.W.); (P.C.); (X.T.)
| |
Collapse
|
2
|
Li W, Zeng J, Zheng N, Ge C, Li Y, Yao H. Polyvinyl chloride microplastics in the aquatic environment enrich potential pathogenic bacteria and spread antibiotic resistance genes in the fish gut. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134817. [PMID: 38878444 DOI: 10.1016/j.jhazmat.2024.134817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Microplastics and antibiotics coexist in aquatic environments, especially in freshwater aquaculture areas. However, as the second largest production of polyvinyl chloride (PVC) in the world, the effects of co-exposure to microplastics particles and antibiotics on changes in antibiotic resistance gene (ARG) profiles and the microbial community structure of aquatic organism gut microorganisms are poorly understood. Therefore, in this study, carp (Cyprinus carpio) were exposed to single or combined PVC microplastic contamination and oxytetracycline (OTC) or sulfamethazine (SMZ) for 8 weeks. PVC microplastics can enrich potential pathogenic bacteria, such as Enterobacter and Acinetobacter, among intestinal microorganisms. The presence of PVC microplastics enhanced the selective enrichment and dissemination risk of ARGs. PVC microplastics combined with OTC (OPVC) treatment significantly increased the abundance of tetracycline resistance genes (1.40-fold) compared with that in the OTC exposure treatment, revealing an obvious co-selection effect. However, compared with those in the control group, the total abundance of ARGs and MGEs in the OPVC treatment groups were significantly lower, which was correlated with the reduced abundances of the potential host Enterobacter. Overall, our results emphasized the diffusion and spread of ARGs are more influenced by PVC microplastics than by antibiotics, which may lead to antibiotic resistance in aquaculture.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Jieyi Zeng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China.
| |
Collapse
|
3
|
De Rinaldis G, Pastorino P, Scirocco T, Sacchetti C, Anselmi S, Provenza F, Renzi M, Specchiulli A. Navigating a Microplastic Sea: How the Pacific Cupped Oyster ( Magallana gigas) Respond to Microplastic Pollution in Lagoons. TOXICS 2024; 12:429. [PMID: 38922109 PMCID: PMC11209222 DOI: 10.3390/toxics12060429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Microplastic pollution poses an escalating concern, particularly in coastal lagoons rich in biodiversity. This study delved into the occurrence of microplastics (MPs) in Magallana gigas (formerly Crassostrea gigas) from the Orbetello and Varano coastal lagoons (Italy), also investigating the response of these filter-feeding organisms to various colors (P = pink; B = blue; W = white) of high-density polyethylene (HDPE) MP fragments. Oysters were exposed for 7 days under controlled conditions. Subsequently, the oysters underwent analysis for both MP presence and biochemical markers of oxidative stress. Diverse ingestion rates of HDPE were noted among oysters from the two lagoons, eliciting antioxidant responses and modifying baseline activity. The two-way ANOVA revealed the significant effects of treatment (control; HDPE_B; HDPE_P; HDPE_W), site, and the interaction between treatment and site on all biomarkers. Non-metric multidimensional scaling showed a divergent effect of HDPE color on biomarkers. Further investigation is warranted to elucidate the mechanisms underlying the influence of MP color, dose-dependent effects, and the long-term impacts of exposure. Comprehending these intricacies is imperative for devising effective strategies to mitigate plastic pollution and safeguard marine health.
Collapse
Affiliation(s)
- Gianluca De Rinaldis
- National Research Council, Institute of Nanotechnology (NANOTEC), 73100 Lecce, Italy;
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d′Aosta, 10154 Torino, Italy
| | - Tommaso Scirocco
- National Research Council—Institute for Marine Biological Resources and Biotechnology (IRBIM), 71010 Lesina, Italy; (T.S.); (C.S.); (M.R.)
| | - Claudia Sacchetti
- National Research Council—Institute for Marine Biological Resources and Biotechnology (IRBIM), 71010 Lesina, Italy; (T.S.); (C.S.); (M.R.)
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, Italy; (S.A.); (F.P.)
| | - Francesca Provenza
- Bioscience Research Center, Via Aurelia Vecchia 32, 58015 Orbetello, Italy; (S.A.); (F.P.)
| | - Monia Renzi
- National Research Council—Institute for Marine Biological Resources and Biotechnology (IRBIM), 71010 Lesina, Italy; (T.S.); (C.S.); (M.R.)
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Antonietta Specchiulli
- National Research Council—Institute for Marine Biological Resources and Biotechnology (IRBIM), 71010 Lesina, Italy; (T.S.); (C.S.); (M.R.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
4
|
Gao S, Li Z, Zhang S. Trophic transfer and biomagnification of microplastics through food webs in coastal waters: A new perspective from a mass balance model. MARINE POLLUTION BULLETIN 2024; 200:116082. [PMID: 38367586 DOI: 10.1016/j.marpolbul.2024.116082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Since the 1950s, plastic pollution and its risk have been recognized as irreversible and nonnegligible problems as global plastic production has increased. In recent years, the transport and trophic transfer of microplastics (MPs) in biotic and abiotic environment have attracted extensive attention from researchers. In this study, based on the Ecotracer module from Ecopath with Ecosim (EwE) model, the marine ranching area of Haizhou Bay, Jiangsu Province, China, was taken as a case study by linking the environmental plastic inflow with MPs in organisms to simulate the variation of MPs in the marine food web for 20 years, as well as its potential trophic transfer and biomagnification. We found that the concentration of MPs in top consumers first increased when the concentration of MPs in the environment increased, while that in primary consumers first decreased when the concentration of MPs in the environment decreased. Moreover, high TL consumers had a stronger ability to accumulate MPs, and pelagic prey fishes was the opposite. From the perspective of the food web, all functional groups showed significant trophic magnification along with the trophic level and no biodilution. Generally, there is a direct relationship between the MPs in marine organisms and environmental inflow. If the pollutants flowing into the environment can be reduced, the MP pollution problem in coastal waters will be effectively alleviated. Our research can further provide a scientific basis for ecological risk assessment and management of MPs and biodiversity protection in marine ecosystems.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Li
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| |
Collapse
|
5
|
Sun Q, Yang YT, Zheng ZY, Ni HG. Nanopolystyrene size effect and its combined acute toxicity with halogenated PAHs on Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169435. [PMID: 38128673 DOI: 10.1016/j.scitotenv.2023.169435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Nanoplastics (NPs, diameter <1 μm) not only have toxicity but also change the toxicity of other pollutants in water. To date, the nanopolystyrene (nano-PS) size effect and its combined toxicity with halogenated polycyclic aromatic hydrocarbons (HPAHs) remain unclear. In this study, the single toxicity, combined toxicity, and mode of action of the binary mixture of polystyrene (PS) and HPAH were examined. At the same time, the nano-PS size effect on combined toxicity was also discussed. According to our results, the 48 h acute toxicity test results showed that 30 nm PS was highly toxic (EC50-48 h = 1.65 mg/L), 200 nm PS was moderately toxic (EC50-48 h = 17.8 mg/L), and 1 μm PS was lowly toxic (EC50-48 h = 189 mg/L). The NP toxicity decreased with increasing size. HPAHs were highly toxic substances to Daphnia magna (EC50-48 h = 0.12-0.22 mg/L). The mode of action of PS and HPAHs was antagonistic according to the toxicity unit method (TU), additive index method (AI), and mixture toxicity index method (MTI). The size effect of nano-PS operates via two mechanisms: the inherent toxicity of nano-PS and the sorption of pollutants by nano-PS. The former impacts the combined toxicity more than the latter. In the binary mixed system, the larger the particle size and the higher the proportion of NPs in the system, the less toxic the system was. Linear interpolation analysis can be used to predict the combined toxicity of a mixed system with any mixing ratio.
Collapse
Affiliation(s)
- Qing Sun
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yu-Ting Yang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
6
|
Yang Y, Guo H. In situ imaging of the spatial and temporal penetration of organic pollutants into microplastics via surface-enhanced Raman spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121712. [PMID: 37098368 DOI: 10.1016/j.envpol.2023.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023]
Abstract
Understanding the spatial and temporal penetration patterns of organic pollutants in microplastics (μP) is important for evaluating their environmental and biological impacts, such as the "Trojan Horse" effect. However, there is a lack of an effective method to monitor the penetration processes and patterns in situ. This study aimed to develop a simple and sensitive approach for in situ imaging of organic pollutant penetration into μP. The novel method was developed using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanoparticles as nanoprobes that could sensitively detect organic pollutants in low-density polyethylene (LDPE) μP spatially and temporally. The detection limit of this SERS-based method was 0.36 and 0.02 ng/mm2 for ferbam (pesticide) and methylene blue (synthetic dye), respectively. The results showed that both ferbam and methylene blue could penetrate LDPE μP. The penetration depth and amount increased as the interaction time increased. Most of the absorbed organic pollutants accumulated within the top 90 μm layer of the tested μP. Compared to methylene blue, ferbam was more quickly absorbed and achieved higher accumulation in μP with a maximum of 32.57 ng/mm2 after 168 h interaction. This pioneering study clearly demonstrated that SERS mapping is a sensitive and in situ approach to visualize and quantify the penetration patterns of organic pollutants in μP. The new approach developed here can advance our understanding of μP as pollutant carriers and their influence on the environmental fate, behavior, and biological impacts of organic pollutants.
Collapse
Affiliation(s)
- Yishan Yang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
| | - Huiyuan Guo
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
| |
Collapse
|
7
|
Ni N, Shi R, Meng J, Guo X, Shi M, Zhang X, Yao S, Nkoh JN, Wang F, Song Y, Wang N. Comparative analysis of the sorption behaviors and mechanisms of amide herbicides on biodegradable and nondegradable microplastics derived from agricultural plastic products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120865. [PMID: 36521718 DOI: 10.1016/j.envpol.2022.120865] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Coexisting of microplastics (MPs) and residual herbicides has received substantial attention due to concerns about the pollutant vector effect. Here, the widely used amide herbicides were examined for their sorption behaviors on the priority biodegradable and nondegradable MPs identified in intensive agriculture. The fitting results indicated that the interactions between napropamide (Nap)/acetochlor (Ace) and the MPs, i.e., poly (butyleneadipate-co-terephthalate) microplastic (PBATM), polyethylene microplastic (PEM), and polypropylene microplastic (PPM), may be dominated by hydrophobic absorptive partitioning on the heterogeneous surfaces. Additionally, chemisorption cannot be ignored for the sorption of Nap/Ace on the biodegradable MPs. The sorption capacities of Nap/Ace on the MPs followed the order of PBATM > PEM > PPM. The differences in sorption capacity which varied by the MP colors were not significant. The hydrophobicity of the herbicides and the MPs, the rubber regions, surface O-functional groups, benzene ring structures and large specific surface area of the biodegradable MPs played key roles in the better performance in sorbing amide herbicides. Moreover, MPs, especially biodegradable MPs, might lead to a higher vector effect for residual amide herbicides than some other common environmental media. This study may provide baseline insights into the great potential of biodegradable MPs to serve as carriers of residual amide herbicides in intensive agrosystems.
Collapse
Affiliation(s)
- Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Renyong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jie Meng
- State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Xinyan Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Mali Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Xiaohui Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, PR China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fenghe Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Nanjing 210008, PR China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China.
| |
Collapse
|
8
|
Interactions between graphene oxide and polyester microplastics changed their phototransformation process and potential environmental risks: Mechanism insights. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|