1
|
Kim S, Kim NG, Kim J, Kim H, Kim KH, Choi W, Kwak KH, Kim C, Woo SH, Lee S, Kim WY, Ahn KH, Lee M, Lee SB. Impact of vehicles at the roadside of expressway in urban area: Simultaneous measurement of particle size distribution and positive matrix factorization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175051. [PMID: 39067602 DOI: 10.1016/j.scitotenv.2024.175051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
This study conducted real-time monitoring of size-resolved particle concentrations ranging from 9 nm to 10 μm simultaneously at four sites on the park ground and the roof of a five-story apartment buildings in the upwind and downwind areas of the Olympic Expressway next to apartment complex areas of Seoul, Korea. Using a positive matrix factorization model for source apportionment, eight factors were resolved at each monitoring site: four exhaust emissions of vehicles, one non-exhaust emission of vehicle, two regional sources, and one unknown source. After categorizing monitoring data into three cases by wind conditions, impact and contribution of each vehicle-related source on the local road to the roadside pollution was quantified and characterized by subtracting the urban background concentrations. Throughout the measurement period, the contribution of vehicle-related sources to the particle number concentration at each monitoring site ranged from 61 % to 69 %, while that to the particle mass concentration ranged from 39 % to 87 %. During periods of steady traffic flow and wind blowing from the road to three downwind sites at speeds exceeding >0.5 m/s during working hours, the particle number concentrations at the downwind sites were 2.2-2.5 times higher than the average levels. Among vehicle-related sources, gasoline vehicles with multiple injections or high-emitting diesel vehicles showed the highest contribution to particle number concentrations at all sites. As wind speed increased, the number concentrations of particles from vehicle exhaust and non-exhaust emissions decreased and increased, respectively, probably due to enhanced dilution and transport, respectively. In addition, particle number concentrations showed a parabolic curve-like trend with traffic volumes increasing to approximately 10,000 vehicles/h, and then decreasing for both vehicle exhaust and non-exhaust emissions. These results can be utilized in numerical modeling studies and in establishing traffic-related environmental policies to reduce seasonal and temporal particle exposure near the roadsides.
Collapse
Affiliation(s)
- San Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment(KU-KIST GREEN SCHOOL), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Nam Geon Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment(KU-KIST GREEN SCHOOL), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jimin Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment(KU-KIST GREEN SCHOOL), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hwandong Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment(KU-KIST GREEN SCHOOL), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyung Hwan Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Wonsik Choi
- Division of Earth and Environmental System Sciences, Pukyong National University, Busan 48547, Republic of Korea
| | - Kyung-Hwan Kwak
- School of Natural Resources and Environmental Science, Kangwon National University, Kangwondaehak-gil 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Changhyuk Kim
- School of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Hee Woo
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Woo Young Kim
- Department of Mechanical Engineering, Hanyang University, Hanyangdeahak-ro 55, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kang-Ho Ahn
- Department of Mechanical Engineering, Hanyang University, Hanyangdeahak-ro 55, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Meehye Lee
- Department of Earth and Environmental sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung-Bok Lee
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, Hwarangro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment(KU-KIST GREEN SCHOOL), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Obanya HE, Khan FR, Carrasco-Navarro V, Rødland ES, Walker-Franklin I, Thomas J, Cooper A, Molden N, Amaeze NH, Patil RS, Kukkola A, Michie L, Green-Ojo B, Rauert C, Couceiro F, Hutchison GR, Tang J, Ugor J, Lee S, Hofmann T, Ford AT. Priorities to inform research on tire particles and their chemical leachates: A collective perspective. ENVIRONMENTAL RESEARCH 2024; 263:120222. [PMID: 39490547 DOI: 10.1016/j.envres.2024.120222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Concerns over the ecological impacts of urban road runoff have increased, partly due to recent research into the harmful impacts of tire particles and their chemical leachates. This study aimed to help the community of researchers, regulators and policy advisers in scoping out the priority areas for further study. To improve our understanding of these issues an interdisciplinary, international network consisting of experts (United Kingdom, Norway, United States, Australia, South Korea, Finland, Austria, China and Canada) was formed. We synthesised the current state of the knowledge and highlighted priority research areas for tire particles (in their different forms) and their leachates. Ten priority research questions with high importance were identified under four themes (environmental presence and detection; chemicals of concern; biotic impacts; mitigation and regulation). The priority research questions include the importance of increasing the understanding of the fate and transport of these contaminants; better alignment of toxicity studies; obtaining the holistic understanding of the impacts; and risks they pose across different ecosystem services. These issues have to be addressed globally for a sustainable solution. We highlight how the establishment of the intergovernmental science-policy panel on chemicals, waste, and pollution prevention could further address these issues on a global level through coordinated knowledge transfer of car tire research and regulation. We hope that the outputs from this research paper will reduce scientific uncertainty in assessing and managing environmental risks from TP and their leachates and aid any potential future policy and regulatory development.
Collapse
Affiliation(s)
- Henry E Obanya
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008, Bergen, Norway
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, 70211, Kuopio, Finland
| | | | | | - Jomin Thomas
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Adam Cooper
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nick Molden
- Emissions Analytics, Unit 2 CR Bates Industrial Estate, Stokenchurch, High Wycombe, Buckinghamshire, HP14 3PD, UK
| | - Nnamdi H Amaeze
- School of the Environment, Memorial Hall, University of Windsor, 401 Sunset Avenue Windsor, Ontario, N9B 3P4, Canada
| | - Renuka S Patil
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, 44325, USA
| | - Anna Kukkola
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura Michie
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Bidemi Green-Ojo
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK
| | - Cassandra Rauert
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Fay Couceiro
- School of Civil Engineering and Surveying at the University of Portsmouth, Hampshire, PO1 3AH, UK
| | - Gary R Hutchison
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Jinglong Tang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Joshua Ugor
- School of the Environment, Geography and Geosciences, University of Portsmouth, UK
| | - Seokhwan Lee
- Environment System Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Thilo Hofmann
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department for Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; University of Vienna, Research Platform Plastics in the Environment and Society (Plenty), Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Alex T Ford
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DY, UK.
| |
Collapse
|
3
|
Löber M, Bondorf L, Grein T, Reiland S, Wieser S, Epple F, Philipps F, Schripp T. Investigations of airborne tire and brake wear particles using a novel vehicle design. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53521-53531. [PMID: 39192151 PMCID: PMC11379764 DOI: 10.1007/s11356-024-34543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Non-exhaust emissions have become an increasingly important issue as their levels continue to rise and the health effects of particulate matter (PM) are more widely discussed. To address this issue, a vehicle demonstrator with integrated emission reduction of tires and brakes was developed as part of the Zero Emission Drive Unit Generation-1 (ZEDU-1) project. This novel concept includes the removal of tire road wear particles (TRWP) with a strong ventilation/filtering system and an enclosed multi-disk brake, making it a suitable tool for the investigation of non-exhaust emissions. Particle number (PN) and particle size distribution (PSD) measurements down to 2.5 nm were performed on a chassis dynamometer and on a test track. Due to the low background concentrations on the chassis dynamometer, it is possible to distinguish between tire and brake wear and to characterize even a small number of particle emissions. It could be shown that about 30 % less particles are emitted by the vehicle, when using the novel multi-disk brake instead of the conventional brake. The highest TRWP emissions were collected during acceleration and harsh braking. Characterization of the collected particles using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) revealed diverse particle shapes and differences between particles generated on the dynamometer and on a test track.
Collapse
Affiliation(s)
- Manuel Löber
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany.
| | - Linda Bondorf
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Tobias Grein
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Sven Reiland
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Steffen Wieser
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Fabius Epple
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Franz Philipps
- German Aerospace Center (DLR), Institute of Vehicle Concepts, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| | - Tobias Schripp
- German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569, Stuttgart, Germany
| |
Collapse
|
4
|
Mousavinezhad S, Choi Y, Khorshidian N, Ghahremanloo M, Momeni M. Air quality and health co-benefits of vehicle electrification and emission controls in the most populated United States urban hubs: Insights from New York, Los Angeles, Chicago, and Houston. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169577. [PMID: 38154628 DOI: 10.1016/j.scitotenv.2023.169577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Transitioning to electric vehicles (EVs) is a prominent strategy for reducing greenhouse gas emissions. However, given the complexity of atmospheric chemistry, the nuanced implications on air quality are yet to be fully understood. Our study delved into changes in PM2.5, ozone, and their associated precursors in major US urban areas, considering various electrification and mitigation scenarios. In the full electrification (FullE) scenario, PM2.5 reduction peaked at values between 0.34 and 2.29 μg.m-3 across distinct regions. Yet, certain areas in eastern Los Angeles exhibited a surprising uptick in PM2.5, reaching as much as 0.67 μg.m-3. This phenomenon was linked to a surge in secondary organic aerosols (SOAs), resulting from shifting NOx/VOCs (volatile organic compounds) dynamics and a spike in hydroxyl radical (OH) concentrations. The FullE scenario ushered in marked reductions in both NOx and maximum daily average 8-h (MDA8) ozone concentrations, with maximum levels ranging from 14.00 to 32.34 ppb and 2.58-9.58 ppb, respectively. However, certain instances revealed growths in MDA8 ozone concentrations, underscoring the intricacies of air quality management. From a health perspective, in the FullE scenario, New York, Chicago, and Houston stand to potentially avert 796, 328, and 157 premature deaths/month, respectively. Los Angeles could prevent 104 premature deaths/month in the HighE-BL scenario, representing a 29 % EV share for light-duty vehicles. However, the FullE scenario led to a rise in mortality in Los Angeles due to increased PM2.5 and MDA8 ozone levels. Economically, the FullE scenario projects health benefits amounting to 51-249 million $/day for New York, Chicago, and Houston. In contrast, Los Angeles may face economic downturns of up to 18 million $/day. In conclusion, while EV integration has the potential to improve urban air quality, offering substantial health and economic advantages, challenges persist. Our results emphasize the pivotal role of VOCs management, providing policymakers with insights for adaptable and efficient measures.
Collapse
Affiliation(s)
| | - Yunsoo Choi
- Department of Earth and Atemospheric Sciences, University of Houston, Houston, TX, USA.
| | - Nima Khorshidian
- Department of Earth and Atemospheric Sciences, University of Houston, Houston, TX, USA.
| | - Masoud Ghahremanloo
- Department of Earth and Atemospheric Sciences, University of Houston, Houston, TX, USA.
| | - Mahmoudreza Momeni
- Department of Earth and Atemospheric Sciences, University of Houston, Houston, TX, USA.
| |
Collapse
|
5
|
Li Z, Qi R, Li Y, Miao J, Li Y, Zhang M, He Z, Zhang N, Pan L. The ban on the sale of new petrol and diesel cars: Can it help control prospective marine pollution of polycyclic aromatic hydrocarbons (PAHs) in Shandong Province, China? JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132451. [PMID: 37669606 DOI: 10.1016/j.jhazmat.2023.132451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
The constantly increasing amount of road vehicles causes massive exhaust emissions of pollutants, including polycyclic aromatic hydrocarbons (PAHs), necessitating a global responsibility to implement the policy of the ban on the sale of new petrol and diesel cars. Here, we assessed the policy control efficiency on marine pollution of PAHs in China through scenario modeling and prediction models, based on pollution monitoring, risk assessment, and source apportionment of PAHs in typical bays of Shandong Province. The results showed that in 2021, the pollution risk levels were relatively low (HI: 0.008-0.068, M-ERM-Q: 0.001-0.016, IBR: 1.23-2.69, ILCR: 8.11 ×10-6-1.99 ×10-5), and PAHs were mainly derived from traffic emissions (24.9%-35.2%), coal combustion (25.2%-32.9%), petroleum (17.2%-28.9%), and biomass combustion (17.6%-22.8%). In 2050, the predicted decrease of pollution risk values after the implementation of the policy was significant (12%-26%), and the gap between 2021 and 2050 was also significantly huge (18%-85%) without considering possible substitution of conventional energy. Collectively, this study built systematic approaches for assessing prospective marine pollution of PAHs. However, due to the particularity of Shandong Province, i.e., its national predominance of conventional energy consumption, the policy may be more effective when it comes to other coastal areas worldwide, calling for a larger scale research.
Collapse
Affiliation(s)
- Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Mengyu Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Feo ML, Torre M, Tratzi P, Battistelli F, Tomassetti L, Petracchini F, Guerriero E, Paolini V. Laboratory and on-road testing for brake wear particle emissions: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100282-100300. [PMID: 37620705 DOI: 10.1007/s11356-023-29229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Brake wear emission is a significant contributor to vehicle-related particulate matter, especially in areas with high traffic density and braking frequency. Only recently, non-exhaust emissions from car brake wear have been regulated under Euro 7 regulation, which introduces emission limits for both brake and tires. It also introduces a standard brake particle assessment procedure which includes sampling procedure and measurement techniques defined in the Global Technical Regulation on brakes from light-duty vehicles up to 3.5 t. Over the years, various experimental setups have been tried leading to non-comparable results. The brake wear particle emissions, expressed as emission factors, are mostly estimated as particle mass or particle number and described using different units (e.g., mg/stop brake, mg/km brake; particle number/cm3) making the comparison between studies very difficult. The aim of the present literature review is to present the state-of-the-art of different experimental methods tuned for assessing brake wear emissions, including electric vehicles. The experiments are carried in close, semi-closed, and open systems, and depending on the experimental design, different sampling methods are applied to reduce particle transport loss and guarantee the efficiency of the particle sampling. Driving condition (e.g., speed and applied pressure), formulation of brake materials, and friction temperature have been found to strongly affect the emission characteristics of brake particles, and this needs to be considered when designing study procedures. The findings reported in this review can be beneficial to policy makers and researchers.
Collapse
Affiliation(s)
- Maria Luisa Feo
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Marco Torre
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy.
| | - Patrizio Tratzi
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Francesca Battistelli
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Laura Tomassetti
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Francesco Petracchini
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Ettore Guerriero
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Valerio Paolini
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| |
Collapse
|
7
|
Zhao X, Hu H, Yuan H, Chu X. How does adoption of electric vehicles reduce carbon emissions? Evidence from China. Heliyon 2023; 9:e20296. [PMID: 37809651 PMCID: PMC10560050 DOI: 10.1016/j.heliyon.2023.e20296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
We investigate the effect of the adoption of electric vehicles (EVs) on CO2 emissions using spatial econometric models and have three findings. First, there are spatial spillover effects of EV adoption on CO2 emissions, implying that the CO2 mitigation of a city depends on local sales of EVs and sales of EVs in neighboring cities. A 1% increase in the sale of EVs in a city can reduce CO2 emissions locally by 0.096% and by 0.087% in a nearby city. Second, EVs indirectly impact CO2 emissions through the substitution effect, energy consumption effect, and technological effect. The overall impact of EV adoption on CO2 emissions is negative. Finally, we demonstrate the moderating effect of urban energy structure on EVs' CO2 emissions mitigation. A 1% increase in the proportion of renewable energy generation increases the decarbonization of EVs by 0.036%. These findings provide policy implications for the coordinated development of EV market and energy system.
Collapse
Affiliation(s)
- Xiaolei Zhao
- School of Economics and Management, Beijing Jiaotong University, Beijing, 100044, China
| | - Hui Hu
- Center for Economic Development Research, Wuhan University, Wuhan, 430072, China
- School of Economics and Management, Wuhan University, Wuhan, 430072, China
| | - Hongjie Yuan
- School of Economics and Management, Wuhan University, Wuhan, 430072, China
| | - Xin Chu
- Wuhan Donghu University, Wuhan, 430063, China
| |
Collapse
|