1
|
Zhou W, Shen X, Xu Z, Yang Q, Jiao M, Li H, Zhang L, Ling J, Liu H, Dong J, Suo A. Specialists regulate microbial network and community assembly in subtropical seagrass sediments under differing land use conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122486. [PMID: 39278015 DOI: 10.1016/j.jenvman.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Microorganisms in the sediment play a pivotal role in the functioning and stability of seagrass ecosystems and their dynamics are influenced by the nutrient acquisition strategies of host plants. While the distinct impacts of microbial generalists and specialists on community dynamics are recognized, their distribution patterns and ecological roles within seagrass ecosystems remain largely unexplored. To address this issue, we conducted an analysis of community assembly processes and co-occurrence relationships of both microbial generalists and specialists within sediment profiles (0-100 cm) from seagrass habitats subjected to differing land use conditions. The results revealed that seagrasses in Yifeng Estuary experienced the large proportion of cultivated land and exhibited higher organic carbon content in the 0-20 cm surface sediment layer. Nitrogen-cycling bacteria were predominantly associated with seagrasses from Yifeng Estuary, whereas Vibrio spp. was more prevalent in seagrasses from Liusha Bay. Notably, seagrass Halophia beccarii (YHB) in Yifeng Estuary harbored higher niche breadths for both microbial generalist and specialist compared to Halodule uninervis (LHU) and Halophia ovalis (LHO) from Liusha Bay. Stochastic processes were pivotal in shaping seagrass sediment microbial communities, with a higher immigration rate observed in YHB, suggesting greater microbial turnover in this area. Additionally, YHB sediment presented lower drift and higher dispersal limitation among generalists compared to LHU and LHO, whereas the pattern was reversed among specialists. Specialists were found to play a crucial role in shaping microbial interactions within YHB sediment, with genera Halioglobus identified as keystone species in the network. The specialists were further found to significantly influence microbial β-diversity in seagrass sediment directly. Overall, our findings illustrated how microbial generalists and specialists were distributed in seagrass sediments in response to land use changes and provided new insights into the potential roles of microbial regulation in degraded seagrass ecosystems.
Collapse
Affiliation(s)
- Weiguo Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaomei Shen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhimeng Xu
- Haide college, Ocean University of China, Qingdao, 266003, China
| | - Qingsong Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Mengyu Jiao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hanying Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Zhang
- Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Juan Ling
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Hongbin Liu
- The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Junde Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Anning Suo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Marine Environmental Engineering Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
2
|
Yang J, Ouyang L, Chen S, Zhang C, Zheng J, He S. Amendments affect the community assembly and co-occurrence network of microorganisms in Cd and Pb tailings of the Eucalyptus camaldulensis rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172365. [PMID: 38641118 DOI: 10.1016/j.scitotenv.2024.172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.
Collapse
Affiliation(s)
- Jiaqi Yang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Linnan Ouyang
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China.
| | - Shaoxiong Chen
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Cheng Zhang
- Experimental Forest Farm of Qingyuan County,Qingyuan 323800, China
| | - Jiaqi Zheng
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| | - Shae He
- Research Institute of Fast-growing Trees, Chinese Academy of Forestry, State Key Laboratory of Efficient Production of Forest Resources, Zhanjiang 524022, China
| |
Collapse
|
3
|
Newman-Portela AM, Krawczyk-Bärsch E, Lopez-Fernandez M, Bok F, Kassahun A, Drobot B, Steudtner R, Stumpf T, Raff J, Merroun ML. Biostimulation of indigenous microbes for uranium bioremediation in former U mine water: multidisciplinary approach assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7227-7245. [PMID: 38157180 PMCID: PMC10821841 DOI: 10.1007/s11356-023-31530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Characterizing uranium (U) mine water is necessary to understand and design an effective bioremediation strategy. In this study, water samples from two former U-mines in East Germany were analysed. The U and sulphate (SO42-) concentrations of Schlema-Alberoda mine water (U: 1 mg/L; SO42-: 335 mg/L) were 2 and 3 order of magnitude higher than those of the Pöhla sample (U: 0.01 mg/L; SO42-: 0.5 mg/L). U and SO42- seemed to influence the microbial diversity of the two water samples. Microbial diversity analysis identified U(VI)-reducing bacteria (e.g. Desulfurivibrio) and wood-degrading fungi (e.g. Cadophora) providing as electron donors for the growth of U-reducers. U-bioreduction experiments were performed to screen electron donors (glycerol, vanillic acid, and gluconic acid) for Schlema-Alberoda U-mine water bioremediation purpose. Thermodynamic speciation calculations show that under experimental conditions, U(VI) is not coordinated to the amended electron donors. Glycerol was the best-studied electron donor as it effectively removed 99% of soluble U, 95% of Fe, and 58% of SO42- from the mine water, probably by biostimulation of indigenous microbes. Vanillic acid removed 90% of U, and no U removal occurred using gluconic acid.
Collapse
Affiliation(s)
- Antonio M Newman-Portela
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain.
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Evelyn Krawczyk-Bärsch
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Margarita Lopez-Fernandez
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
| | - Frank Bok
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andrea Kassahun
- WISMUT GmbH, Jagdschänkenstraße 29, 09117, Chemnitz, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Johannes Raff
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
| |
Collapse
|
4
|
He Y, Pan J, Huang D, Sanford RA, Peng S, Wei N, Sun W, Shi L, Jiang Z, Jiang Y, Hu Y, Li S, Li Y, Li M, Dong Y. Distinct microbial structure and metabolic potential shaped by significant environmental gradient impacted by ferrous slag weathering. ENVIRONMENT INTERNATIONAL 2023; 178:108067. [PMID: 37393724 DOI: 10.1016/j.envint.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Alkaline ferrous slags pose global environmental issues and long-term risks to ambient environments. To explore the under-investigated microbial structure and biogeochemistry in such unique ecosystems, combined geochemical, microbial, ecological and metagenomic analyses were performed in the areas adjacent to a ferrous slag disposal plant in Sichuan, China. Different levels of exposure to ultrabasic slag leachate had resulted in a significant geochemical gradient of pH (8.0-12.4), electric potential (-126.9 to 437.9 mV), total organic carbon (TOC, 1.5-17.3 mg/L), and total nitrogen (TN, 0.17-1.01 mg/L). Distinct microbial communities were observed depending on their exposure to the strongly alkaline leachate. High pH and Ca2+ concentrations were associated with low microbial diversity and enrichment of bacterial classes Gamma-proteobacteria and Deinococci in the microbial communities exposed to the leachate. Combined metagenomic analyses of 4 leachate-unimpacted and 2-impacted microbial communities led to the assembly of one Serpentinomonas pangenome and 81 phylogenetically diversified metagenome assembled genomes (MAGs). The prevailing taxa in the leachate-impacted habitats (e.g., Serpentinomonas and Meiothermus spp.) were phylogenetically related to those in active serpentinizing ecosystems, suggesting the analogous processes between the man-made and natural systems. More importantly, they accounted for significant abundance of most functional genes associated with environmental adaptation and major element cycling. Their metabolic potential (e.g., cation/H+ antiporters, carbon fixation on lithospheric carbon source, and respiration coupling sulfur oxidization and oxygen or nitrate reduction) may support these taxa to survive and prosper in these unique geochemical niches. This study provides fundamental understandings of the adaptive strategies of microorganisms in response to the strong environmental perturbation by alkali tailings. It also contributes to a better comprehension of how to remediate environments affected by alkaline industrial material.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences, China; Yejin Geological Team of Hubei Geological Bureau, China
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China.
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China; Hubei Key Laboratory of Wetland Evolution and Ecology Restoration, China.
| |
Collapse
|
5
|
Luo F, Zhang J, Wei Q, Jiang Z, Jiang D, Liu S, Xia Z, Zhang J, Qi L, Wang H, Liu G. Insights into the relationship between denitrification and organic carbon release of solid-phase denitrification systems: Mechanism and microbial characteristics. BIORESOURCE TECHNOLOGY 2022; 364:128044. [PMID: 36182014 DOI: 10.1016/j.biortech.2022.128044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Solid-phase denitrification is a promising alternative denitrification technology when facing a shortage of carbon sources. Nevertheless, it is still unclear whether there is a certain interaction between the denitrification process and the carbon release process in a solid-phase denitrification system. In this study, the concept of "Self-adaptation" was proposed for the relationship between denitrification and carbon release. At various influent nitrate loads, the PCL-supported denitrification system achieved an average nitrate removal rate of over 90.59 ± 7.01 % and a maximum denitrification rate of 0.67 ± 0.06 gN/(L·d). Microorganisms can spontaneously regulate the carbon release rate of PCL in response to changes in influent nitrate load, demonstrating "self-adaptation" of the PCL-supported solid-phase denitrification system. Regulation of carbon release rate via the "Self-adaptation" was achieved by changes in extracellular depolymerase activity. Acidovorax_sp. played a key role in "Self-adaptation", for its function of both denitrification and PCL degradation.
Collapse
Affiliation(s)
- Fangzhou Luo
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Jinsen Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Qi Wei
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Zhao Jiang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Danyang Jiang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Shuai Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Zhiheng Xia
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Jingbing Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China.
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Guohua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| |
Collapse
|