1
|
Perumal SDM, Thangaian DT, Nandhakumar M, Devaraj N, Kalagatur NK. Evolution of large stokes shift and non-radiative energy transfer phenomenon in sustainable blue-fluorescent CQDs upon subnanomolar detection of Acebrophylline. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 329:125559. [PMID: 39675175 DOI: 10.1016/j.saa.2024.125559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Carbon quantum dots (CQDs) have emerged as powerful fluorescent sensors for identifying harmful compounds in environmental and biological samples, due to their robust and adjustable emission characteristics. In this study, we explore CQDs (size ∼ 3 nm), as a probe, derived from Walnut Shell (WS) biomass waste for detecting Acebrophylline (AB), a respiratory disease medicine. From the selectivity studies, the calculated energy transfer between the CQDs (10 mM; donor) and AB (10 mM; acceptor) was found to be 64 %, attributed to the formation of a ground state complex, CQDs + AB. The CQDs demonstrated high selectivity and sensitivity to AB in concentrations between 1-100 μM with a detection limit of 0.142 nM (R2 = 0.991, Ka = 1.39194 × 10-3 M-1). Time-correlated single-photon counting (TCSPC) experiments validated the static quenching of CQDs (3.46 → 3.71 ns) when exposed to AB. The proposed detection method was successfully applied for detecting AB in human urine samples with a good recovery percentage (81 to 123 %; RSD ca. 1 %). After AB sensing, changes in the CQDs' crystalline nature, elemental composition, and chemical state were examined using XRD, XPS, and FTIR spectroscopy. Microscopy imaging techniques (FESEM, HRTEM, and AFM) confirmed morphological changes of CQDs from spherical to agglomerated with an average diameter of approximately 14 nm. Additionally, the impact of time, pH, and interferons on AB sensing was investigated. In vitro anti-inflammatory activity and in vivo bioimaging studies on zebrafish were also performed. This study highlights several advantages, including a cost-effective and eco-friendly approach for healthcare applications.
Collapse
Affiliation(s)
- Saranya Devi Mudisoodum Perumal
- Department of Chemistry, and Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamilnadu, India
| | - Daniel Thangadurai Thangaian
- Department of Chemistry, and Centre for Research and Development, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamilnadu, India.
| | - Manjubaashini Nandhakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, Tamilnadu, India
| | - Nataraj Devaraj
- Departments of Physics, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| | - Naveen Kumar Kalagatur
- BU-DRDO Center for Life Science, Bharathiar University, Coimbatore 641046, Tamilnadu, India
| |
Collapse
|
2
|
Revanna BN, Kamat V, Swamynayaka A, Harish KK, Venkatesha K, Madegowda M, Poojary B, Majani SS, Kollur SP. Chalcone-based Turn-Off Chemosensor for Selective and Susceptible Detection of Fe 2+ Ions: Spectroscopic and DFT Investigations. J Fluoresc 2024:10.1007/s10895-024-03646-4. [PMID: 38457072 DOI: 10.1007/s10895-024-03646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Herein, in this report we are introducing newly synthesized chalcone derivative, "(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one" (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M-1 with the help of the Stern-Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10-5 M and 14.54 × 10-5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.
Collapse
Affiliation(s)
- Bhavya Nelligere Revanna
- Department of Physics, Vidyavardhaka College of Engineering, Mysuru, 570002, Karnataka, India
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Vinuta Kamat
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, 574199, Karnataka, India
| | - Ananda Swamynayaka
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Keshav Kumar Harish
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Keerthikumara Venkatesha
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India
| | - Mahendra Madegowda
- Department of Studies in Physics, University of Mysore, Mysuru , Manasagangotri, 570006, Karnataka, India.
| | - Boja Poojary
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, 574199, Karnataka, India
| | - Sanjay S Majani
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, 570026, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, 570026, Karnataka, India
| |
Collapse
|
3
|
Che Y, Yang J, Dong Z, Wang J, Yan X, Wang Y, Shuang S. A sensitive "turn-on" Schiff-base fluorescent probe for the selective detection of Fe 3+ and bio-imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123799. [PMID: 38134651 DOI: 10.1016/j.saa.2023.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
A novel Schiff-base fluorescent probe, 4-(N-(2- hydroxyl-1-naphthalymethylimino)-ethylamino) -7-nitro-1,2,3-benzoxadiazole (HENB) was synthesized and utilized for spectral sensing of Fe3+ ions at neutral pH. The binding of Fe3+ to HENB in C2H5OH-HEPES buffer (1:1 v/ v, 25 mM, pH 7.2) resulted in a pronounced emission enhancement at 530 nm, which is possibly due to the inhibition of photo-induced electron transfer (PET) process as well as the chelation enhanced fluorescence (CHEF) effect. HENB shows good selectivity and sensitivity toward Fe3+ with the detection limit as low as 4.51 nM. Test strips made of HENB was used for rapid "naked-eye" detection of Fe3+ ions in aqueous medium. Moreover, HENB was successfully applied in fluorescence imaging of exogenous and endogenous Fe3+ in live Hela cells as well as zebrafish. Importantly, HENB is capable of effectively monitoring the variations of Fe3+ in living cells during ferroptosis process.
Collapse
Affiliation(s)
- Yiran Che
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jingying Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhenming Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jianhua Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaoqing Yan
- School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Singh G, Priyanka, Sushma, Sharma S, Deep Kaur J, Devi A, Gupta S, Devi S, Mohan B. Designing of efficient two-armed colorimetric and fluorescent indole appended organosilicon sensors for the detection of Al(III) ions: Implication as paper-based sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123015. [PMID: 37364410 DOI: 10.1016/j.saa.2023.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Metal ions have significant roles in diagnosis, industry, human health, and the environment. To design and develop new lucid molecular receptors for the selective detection of metal ions is important for environmental and medical applications. In the present work, two-armed indole appended Schiff bases conjoined with 1,2,3-Triazole bis-organosilane and bis-organosilatrane skelton sensors for naked eye colorimetric and fluorescent detection sensors for Al(III) are developed. The introduction of Al(III) in sensor 4 and 5 show red shift in UV-visible spectra, changes in fluorescence spectra and immediate color change from colorless to dark yellow. Furthermore, the pH and time response studies were explored for both sensors 4 & 5. The sensors 4 and 5 exhibited significantly low detection limit (LOD) in nano-molar range 1.41 × 10-9 M and 0.17 × 10-9 M respectively from emission titration. The LOD form absorption titration was found to be 0.6 × 10-7 M for sensor 4 and 0.22 × 10-7 M for sensor 5. In addition, the sensing model is developed as paper based sensor for its practical applicability. The theoretical calculations were performed on Gaussian 03 program by relaxing the structures using Density functional theory.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Priyanka
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India.
| | - Sushma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sanjay Sharma
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Jashan Deep Kaur
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Anita Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Sofia Gupta
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Swati Devi
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh 160014, India
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Singh G, Devi A, Sharma S, Devi S, Mohan B, Yadav R, Sehgal R. Development of piperazine conjoined 1,2,3-triazolyl-γ-propyltriethoxysilanes: Fluorometric detection of Cr 3+ ions and computational study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122358. [PMID: 36702083 DOI: 10.1016/j.saa.2023.122358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Chromium is essential for some biochemical processes, and excess is a big concern that shows adverse effects on human health and the environment. Therefore, it is urgent to design new sensors to detect chromium ions rapidly. The present study discusses the synthesis of piperazine conjoined 1,2,3-triazolyl-γ-propyltriethoxysilanes (4a-4b) and development of 4a as fluorescence turn-on sensor for the detection of Cr3+ ions. The mechanistic insights reveal to the restricted CN rotation and inhibited intramolecular charge transfer (ICT) process. In addition, Job's plot and Benesi-Hildebrand plot justify the 1:1 binding affinity with a binding constant of 9.96 × 105 M-1 for [ligand 4a + Cr3+] complex and the limit of detection for Cr3+ ions is observed as 6.06 × 10-8 M. The fluorescence spectral changes, 1H NMR spectra and DFT studies provide evidences for ligand 4a and Cr3+ ions interactions. Further, the reversibility of the ligand 4a from [ligand 4a + Cr3+] complex on the addition of EDTA can be used in the construction of molecular logic gate where Cr3+ and EDTA are considered as inputs and the fluorescence intensity at 398 nm as output. Further, compounds 4a-4b were then evaluated for their antibacterial activity against bacterial strains (Escherichia coliand Staphylococcus aureus), revealing a modest activity. The binding mode of ligand 4a to Staphylococcus aureus (PDB ID - 3U2K) and Escherichia coli (PDB ID - 5Z4O) was investigated using an in-silico molecular docking technique, which revealed that the triazole ring and silanyl group are involved in hydrogen bonding with proteins and may be the cause of the ligand's antibacterial activity. The ligand 4a demonstrated a high affinity for binding within the active sites of proteins with binding energies of -7.97 kcal/mol (3U2K) and -8.68 kcal/mol (5Z4O).
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Anita Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| | - Sanjay Sharma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Swati Devi
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Brij Mohan
- College of Ocean Food and Biological Engineering, Jimei University, 185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Richa Yadav
- Department of Medical Parasitology, PGIMER, Chandigarh 160014, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, PGIMER, Chandigarh 160014, India.
| |
Collapse
|
6
|
Amin Z, Rauf T, Jan Q, Kuchey MY, Sofi FA, Ismail T, Rashid A, Bhat BA, Sidiq N, Bhat MA. Synthesis of a Novel Hydrazone Functionality based Spectrophotometric Probe for Selective and Sensitive Estimation of Toxic Heavy Metal Ions. ChemistrySelect 2023. [DOI: 10.1002/slct.202202632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zainab Amin
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Tabasum Rauf
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Qounsar Jan
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| | - Tabasum Ismail
- Department of Chemistry SP College Srinagar 190001, J & K India
| | - Auqib Rashid
- Medicinal Chemistry Division Indian Institute of Integrative Medicine, Sanatnagar Srinagar 190005, J&K India
| | - Bilal Ahmad Bhat
- Medicinal Chemistry Division Indian Institute of Integrative Medicine, Sanatnagar Srinagar 190005, J&K India
| | - Naheed Sidiq
- Department of Chemistry and Earth Sciences Qatar University Doha 2713 Qatar
| | - Mohsin Ahmad Bhat
- Department of Chemistry University of Kashmir Srinagar 190006, J & K India
| |
Collapse
|
7
|
A Multichannel Fluorescent Tongue for Amyloid- β Aggregates Detection. Int J Mol Sci 2022; 23:ijms232314562. [PMID: 36498895 PMCID: PMC9739152 DOI: 10.3390/ijms232314562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Attention has been paid to the early diagnosis of Alzheimer's disease, due to the maximum benefit acquired from the early-stage intervention and treatment. However, the sensing techniques primarily depended upon for neuroimaging and immunological assays for the detection of AD biomarkers are expensive, time-consuming and instrument dependent. Here, we developed a multichannel fluorescent tongue consisting of four fluorescent dyes and GO through electrostatic and π-π interaction. The array distinguished multiple aggregation states of 1 µM Aβ40/Aβ42 with 100% prediction accuracy via 10-channel signal outputs, illustrating the rationality of the array design. Screening vital sensor elements for the simplified sensor array and the optimization of sensing system was achieved by machine learning algorithms. Moreover, our sensing tongue was able to detect the aggregation states of Aβ40/Aβ42 in serum, demonstrating the great potential of multichannel array in diagnosing the Alzheimer's diseases.
Collapse
|
8
|
Kau N, Jindal G, Kaur R, Rana S. Progress in development of metal organic frameworks for electrochemical sensing of volatile organic compounds. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|