1
|
Li J, Deqing Z, Liang J, Guo T, Yao J, Liu W. Combustion aerosols and suspended dust with controlled processes in Lhasa: Elemental analysis and size distribution characteristics. J Environ Sci (China) 2025; 148:591-601. [PMID: 39095192 DOI: 10.1016/j.jes.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 08/04/2024]
Abstract
To explore air contamination resulting from special biomass combustion and suspended dust in Lhasa, the present study focused on the size distribution and chemical characteristics of particulate matter (PM) emission resulting from 7 types of non-fossil pollution sources. We investigated the concentration and size distribution of trace elements from 7 pollution sources collected in Lhasa. Combining Lhasa's atmospheric particulate matter data, enrichment factors (EFs) have been calculated to examine the potential impact of those pollution sources on the atmosphere quality of Lhasa. The highest mass concentration of total elements of biomass combustion appeared at PM0.4, and the second highest concentration existed in the size fraction 0.4-1 µm; the higher proportion (12 %) of toxic metals was produced by biomass combustion. The elemental composition of suspended dust and atmospheric particulate matter was close (except for As and Cd); the highest concentration of elements was all noted in PM2.5-10 (PM3-10). Potassium was found to be one of the main biomass markers. The proportion of Cu in suspended dust is significantly lower than that of atmospheric particulate matter (0.53 % and 3.75 %), which indicates that there are other anthropogenic sources. The EFs analysis showed that the Cr, Cu, Zn, and Pb produced by biomass combustion were highly enriched (EFs > 100) in all particle sizes. The EFs of most trace elements increased with decreasing particle size, indicating the greater influence of humanfactors on smaller particles.
Collapse
Affiliation(s)
- Jinglin Li
- Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Zhuoga Deqing
- Meteorological Bureau of Tibet Autonomous Region, Lhasa 850000, China
| | - Jie Liang
- Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Tao Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Jian Yao
- Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Wei Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Science, Shanghai 201800, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
2
|
Shi Z, Lu J, Liu T, Zhao X, Liu Y, Mi J, Zhao X. Risk assessment and source apportionment of available atmospheric heavy metal in a typical sandy area reservoir in Inner Mongolia, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168960. [PMID: 38043824 DOI: 10.1016/j.scitotenv.2023.168960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
This study evaluated dry and wet deposition of atmospheric heavy metals (HMs) in a sandy area of Inner Mongolia, China, with the Dahekou Reservoir, Xilin Gol League, adopted as the study area. Monthly monitoring of atmospheric HM dry and wet deposition was conducted over one year (2021 to 2022) at 12 monitoring points, producing 144 dry and wet deposition samples, respectively. The sample contents of eight HMs (Cr, Ni, Pb, Cu, Zn, Mn, As, and Cd) were determined to estimate the fluxes of available forms of heavy metal (AHM) in dry and wet deposition. The potential ecological index (Eri), risk assessment coding (RAC), and ratio of secondary phase to primary phase (RSP) were used to evaluate the impact of atmospheric HM dry deposition on ecological security. Correlation analysis, principal component analysis, and the absolute principal component scores-multiple linear regression (APCS-MLR) receptor model were used to quantitatively analyze the sources of AHMs in atmospheric dry and wet deposition. The results showed that the study area experienced annual dry and wet deposition fluxes of AHMs of 1712.59 kg and 534.97 kg, respectively. Atmospheric heavy metal dry deposition over the entire year presented a strong ecological risk, with Cd contributing most to this risk. Risk assessment of HM speciation showed that the greatest risks of migration and transformation were for Cd and Pb. The APCS-MLR receptor model identified five and three sources of dry and wet deposition, respectively, in order of proportion of total contribution of: natural wind and sand > road traffic and coal combustion > mineral mining > other human activities > industrial soot.
Collapse
Affiliation(s)
- Zhenyu Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Tingxi Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Water Resources Protection and Utilization Key Laboratory, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoqin Zhao
- Hohhot Sub Station of the General Environmental Monitoring Station of Inner Mongolia Autonomous Region, Hohhot 010030,Inner Mongolia, China
| | - Yinghui Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiahui Mi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoze Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Jiao X, Dong Z, Baccolo G, Li F, Wei T, Li J, Qin X. Insights on the distribution and environmental implications of the radio-isotope 235U in surface soils and glaciers of the Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120824. [PMID: 36493938 DOI: 10.1016/j.envpol.2022.120824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Atom ratio between 235U and 238U is often used as an indicator of U contamination as the isotopic signature of products generated by the nuclear and military industry significantly vary from the natural isotopic ratio of U. In this study, surface soils and glaciers samples were collected in the Tibetan Plateau (TP) and its surrounding areas and analyzed for U isotopic composition. Results show that the 235U/238U atom ratios in the surface soils of the TP ranges from 0.007122 to 0.007615, with an average value of 0.007378 ± 0.00011; while in the snow/ice dust from high-altitude glaciers it ranges from 0.007254 to 0.007687, with an average value of 0.007345 ± 0.000128. These ratios are slightly higher than the typical crustal value, indicating that the TP was affected by an anthropogenic input of 235U, especially in its northeast and southwest sectors. The variability of our results suggests that the spatial distribution of this contamination is not uniform, pointing to differences in the potential sources and transmission paths of radioactive particles. Combining the knowledge of past tests and activities conducted in the geographic areas around the TP with the knowledge of prevailing winds, we hypothesize that the observed 235U contamination in the TP surface soils and glaciers may have originated mainly from the previous nuclear related activities in surrounding areas (e.g., north Gobi Desert and South Asia). In addition, the horizontal and vertical wind field around the Tibetan Plateau, as well as the atmospheric aerosol optical thickness data also demonstrated the possible transport paths of the radionuclides, that is, originated from in northern Gobi desert and South Asia and reached the TP crossing the Himalayas.
Collapse
Affiliation(s)
- Xiaoyu Jiao
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiwen Dong
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Giovanni Baccolo
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Fangzhou Li
- College of Environmental Science and Engineering, Peking University, Beijing, China
| | - Ting Wei
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jing Li
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiang Qin
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; Qilian Mountain Glacier and Ecological Environment Research Station, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
4
|
Li X, Guo J, Yu F, Tripathee L, Yan F, Hu Z, Gao S, He X, Li C, Kang S. Concentrations, sources, fluxes, and absorption properties of carbonaceous matter in a central Tibetan Plateau river basin. ENVIRONMENTAL RESEARCH 2023; 216:114680. [PMID: 36332672 DOI: 10.1016/j.envres.2022.114680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Carbonaceous matter (CM) (such as water-insoluble organic carbon (WIOC), black carbon (BC), and water-soluble organic carbon (WSOC)) has a significant impact on the carbon cycle and radiative forcing (RF) of glacier. Precipitation samples and glacier's snow/ice samples (snowpit, surface snow, and granular ice) (Xiao dongkemadi Glacier) were collected at the Dongkemadi River Basin (DRB) in the central Tibetan Plateau (TP) between May and October 2016 to investigate the characteristics and roles of CM in the TP River Basin. WIOC, BC, and WSOC concentrations in precipitation were relatively higher than that in snowpit, but lower than that in surface snow/ice, with the wet deposition fluxes of 0.10 ± 0.002, 0.04 ± 0.001, and 0.12 ± 0.002 g C m-2 yr-1 at DRB, respectively. The positive matrix factorization model identified four major sources (biomass burning source, secondary precursors, secondary aerosol, and dust source) of CM in precipitation at DRB. Two source areas (South Asia and the interior of TP) contributing to the pollution at DRB were identified using a potential source contribution function model, a concentration-weighted trajectory method, and the back-trajectory model. Moreover, the light-absorption by WSOC in the ultraviolet region was 23.0%, 12.1%, and 3.4% relative to the estimated total light-absorption in precipitation, snowpit, and surface snow/ice, respectively. Optical indices analysis revealed that WSOC in snowpit samples presented higher molecular weight, while presented higher aromatic and higher molecule sizes in surface snow/ice and precipitation samples, respectively. RF by WSOC relative to that of BC was estimated to be 17.6 ± 17.6% for precipitation, 10.9 ± 5.8% for snowpit, and 10.7 ± 11.6% for surface snow/ice, respectively, during the melt season in the central TP River Basin. These results help us understand how CM affects glaciers, and they can be utilized to create policies and recommendations that efficiently reduce emissions.
Collapse
Affiliation(s)
- Xiaofei Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China; Tanggula Cryosphere and Environment Observation Station, Lanzhou, 730000, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Jingning Guo
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Feng Yu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fangping Yan
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhaofu Hu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shaopeng Gao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaobo He
- Tanggula Cryosphere and Environment Observation Station, Lanzhou, 730000, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chaoliu Li
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|