1
|
Li Z, Chen Z, Ye C, Gong L, Wang H, Zhou J. Engineering of lattice defects in supported Cu-Mn-Ce composite oxide catalysts through ultra-low Pd doping and plasma treatment for catalytic oxidation of hexane. ENVIRONMENTAL RESEARCH 2025; 267:120652. [PMID: 39701343 DOI: 10.1016/j.envres.2024.120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Despite the low cost of supported non-precious metal catalysts, their catalytic activity is significantly lower than that of precious metal catalysts in the catalytic oxidation reaction of volatile organic compounds (VOCs). In order to enhance the catalytic activity of supported non-precious metal catalysts, we introduced an ultra-low loading of palladium into the existing catalytic system and employed a plasma preparation process instead of the conventional impregnation method. The approach significantly improves the catalytic activity of the active sites on the catalyst. The results indicate that, compared to the supported Pd and CuMnCeOx catalysts prepared by conventional impregnation method, the Pd/CuMnCeOx/SiO2-P catalysts prepared via plasma exhibit a higher proportion of lattice defects (oxygen vacancies). Furthermore, the doping of the ultra-low Pd could facilitate the formation of additional lattice defects in the composite oxide. As a result, it can improve the content of surface active oxygen and enhance the adsorptive strength of hexane on the surface of the catalyst. The Pd/CuMnCeOx/SiO2-P catalysts exhibit high catalytic activity and stability in the catalytic oxidation of n-hexane. This work promotes the potential application in the preparation of catalyst with ultra-low precious metal loading.
Collapse
Affiliation(s)
- Zihao Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China
| | - Zewen Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China; Department of Artificers, Zhoushan Technician College, Zhoushan, Zhejiang, 316000, China
| | - Chen Ye
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China
| | - Lixi Gong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China
| | - Hui Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China.
| | - Jie Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Xiasha University Park, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
2
|
Li YY, Ren Y, He J, Xiao H, Li JR. Recent Advances of the Effect of H 2O on VOC Oxidation over Catalysts: Influencing Factors, Inhibition/Promotion Mechanisms, and Water Resistance Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1034-1059. [PMID: 39762185 DOI: 10.1021/acs.est.4c08745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Water vapor is a significant component in real volatile organic compounds (VOCs) exhaust gas and has a considerable impact on the catalytic performance of catalysts for VOC oxidation. Important progress has been made in the reaction mechanisms of H2O and water resistance strategies for VOC oxidation in recent years. Despite advancements in catalytic technology, most catalysts still exhibit low activity under humid conditions, presenting a challenge in reducing the adverse effects of H2O on VOC oxidation. To develop water-resistant catalysts, understanding the mechanistic role of H2O and implementing effective water-resistance strategies with influencing factors are imperative. This Perspective systematically summarizes related research on the impact of H2O on VOC oxidation, drawing from over 390 papers published between 2013 and 2024. Five main influencing factors are proposed to clarify their effects on the role of H2O. Five inhibition/promotion mechanisms of H2O are introduced, elucidating their role in the catalytic oxidation of various VOCs. Additionally, different kinds of water resistance strategies are discussed, including the fabrication of hydrophobic materials, the design of specific structures and morphologies, and the introduction of additional elements for catalyst modification. Finally, scientific challenges and opportunities for enhancing the design of efficient and water-resistant catalysts for practical applications in VOC purification are highlighted.
Collapse
Affiliation(s)
- Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yong Ren
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Jun He
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, PR China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, 315100, PR China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P.R. China
- Ningbo Key Laboratory of Urban Environmental Pollution and Control, Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315800, P.R. China
| |
Collapse
|
3
|
Zuo X, Zhang L, Gao G, Xin C, Fu B, Liu S, Ding H. Catalytic Oxidation of Benzene over Atomic Active Site AgNi/BCN Catalysts at Room Temperature. Molecules 2024; 29:1463. [PMID: 38611743 PMCID: PMC11013234 DOI: 10.3390/molecules29071463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Benzene is the typical volatile organic compound (VOC) of indoor and outdoor air pollution, which harms human health and the environment. Due to the stability of their aromatic structure, the catalytic oxidation of benzene rings in an environment without an external energy input is difficult. In this study, the efficient degradation of benzene at room temperature was achieved by constructing Ag and Ni bimetallic active site catalysts (AgNi/BCN) supported on boron-carbon-nitrogen aerogel. The atomic-scale Ag and Ni are uniformly dispersed on the catalyst surface and form Ag/Ni-C/N bonds with C and N, which were conducive to the catalytic oxidation of benzene at room temperature. Further catalytic reaction mechanisms indicate that benzene reacted with ·OH to produce R·, which reacted with O2 to regenerate ·OH. Under the strong oxidation of ·OH, benzene was oxidized to form alcohols, carboxylic acids, and eventually CO2 and H2O. This study not only significantly reduces the energy consumption of VOC catalytic oxidation, but also improves the safety of VOC treatment, providing new ideas for the low energy consumption and green development of VOC treatment.
Collapse
Affiliation(s)
- Xin Zuo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
- North China Municipal Engineering Design & Research Institute Co., Ltd., Tianjin 300074, China
| | - Lisheng Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Ge Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Changchun Xin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Bingfeng Fu
- Shenzhen Yuanqi Environmental Energy Technology Co., Ltd., Futian District, Shenzhen 518045, China;
| | - Shejiang Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| | - Hui Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; (X.Z.); (L.Z.); (G.G.); (C.X.); (S.L.)
| |
Collapse
|
4
|
Shi Y, Kong F, Wan J, Zhou R. Synergistic Effect of ZSM-5 Zeolite in Pt–CeO 2–TiO 2/ZSM-5 Catalysts for Highly Efficient Catalytic Oxidation of VOCs. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Yijun Shi
- Institute of Catalysis, Department of chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Fanzhe Kong
- Institute of Catalysis, Department of chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| | - Jie Wan
- Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167,P. R. China
| | - Renxian Zhou
- Institute of Catalysis, Department of chemistry, Zhejiang University, Hangzhou 310028, P. R. China
| |
Collapse
|
5
|
Tan B, Huo Z, Sun L, Ren L, Zhao P, Feng N, Wan H, Guan G. Ionic liquid-modulated synthesis of MnO2 nanowires for promoting propane combustion: Microstructure engineering and regulation mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|